6---o-malonyldaidzin and genistin

6---o-malonyldaidzin has been researched along with genistin* in 5 studies

Other Studies

5 other study(ies) available for 6---o-malonyldaidzin and genistin

ArticleYear
Enhancement of developmentally regulated daidzein secretion from soybean roots in field conditions as compared with hydroponic culture.
    Bioscience, biotechnology, and biochemistry, 2021, Apr-24, Volume: 85, Issue:5

    Analyses of metabolite secretions by field-grown plants remain scarce. We analyzed daidzein secretion by field-grown soybean. Daidzein secretion was higher during early vegetative stages than reproductive stages, a trend that was also seen for hydroponically grown soybean. Daidzein secretion was up to 10 000-fold higher under field conditions than hydroponic conditions, leading to a more accurate simulation of rhizosphere daidzein content.

    Topics: Genistein; Glucosides; Glycine max; Hydroponics; Isoflavones; Organ Specificity; Plant Leaves; Plant Roots; Rhizosphere

2021
The natural plant stress elicitor cis-jasmone causes cultivar-dependent reduction in growth of the stink bug, Euschistus heros and associated changes in flavonoid concentrations in soybean, Glycine max.
    Phytochemistry, 2016, Volume: 131

    To test the hypothesis that the plant stress related elicitor cis-jasmone (cJ) provides protection in soybean pods against the seed-sucking stink bug pest, Euschistus heros, the growth of E. heros on cJ-treated pods was investigated using three soybean cultivars differing in insect susceptibility, i.e. BRS 134 (susceptible), IAC 100 (resistant) and Dowling (resistant). E. heros showed reduced weight gain when fed cJ-treated Dowling, whereas no effect on weight gain was observed when fed other treated cultivars. Using analysis of variance, a three factor (cultivar x treatment x time) interaction was observed with concentrations of the flavonoid glycosides daidzin and genistin, and their corresponding aglycones, daidzein and genistein. There were increases in genistein and genistin concentrations in cJ-treated Dowling at 144 and 120 h post treatment, respectively. Higher concentrations of malonyldaidzin and malonylgenistin in Dowling, compared to BRS 134 and IAC 100, were observed independently of time, the highest concentrations being observed in cJ-treated seeds. Levels of glycitin and malonylglycitin were higher in BRS 134 and IAC 100 compared to Dowling. Canonical variate analysis indicated daidzein (in the first two canonical variates) and genistein (in the first only) as important discriminatory variables. These results suggest that cJ treatment leads to an increase in the levels of potentially defensive isoflavonoids in immature soybean seeds, but the negative effect upon E. heros performance is cultivar-dependent.

    Topics: Animals; Cyclopentanes; Feeding Behavior; Flavonoids; Genistein; Glucosides; Glycine max; Heteroptera; Isoflavones; Oxylipins; Seeds

2016
Isoflavone Profiles and Kinetic Changes during Ultra-High Temperature Processing of Soymilk.
    Journal of food science, 2016, Volume: 81, Issue:3

    Isoflavone profile is greatly affected by heating process. However, kinetic analyses of isoflavone conversion and degradation using a continuous industry processing method have never been characterized. In this study, Proto soybean was soaked and blanched at 80 °C for 2 min and then processed into soymilk, which underwent UHT (ultra-high temperature) at 135 to 150 °C for 10 to 50 s with a pilot plant-scale Microthermics processor. The isoflavone profile was determined at different time/temperature combinations. The results showed that all isoflavone forms exhibited distinct changing patterns over time. In the soymilk under UHT conditions, the degradation (disappearance) of malonyldaizin and malonylgenistin exhibited first-order kinetics with activation energies of 59 and 84 kj/mole, respectively. At all UHT temperatures, malonylgenistin showed higher rate constants than malonyldaidzin. However, malonylglycitin changed irregularly under these UHT temperatures. The increase of genistin, daidzin, glycitein and acetlydaidzin during heating demonstrated zero-order kinetics and the rate constants increased with temperature except for the conditions of 145 to 150 °C for 50 s. Overall, genistein series exhibited higher stability than daidzein series. Under all UHT conditions, total isoflavone decreased from 12% to 24%.

    Topics: Food Handling; Glucosides; Glycine max; Hot Temperature; Humans; Isoflavones; Kinetics; Soy Milk

2016
Ethylene Induced a High Accumulation of Dietary Isoflavones and Expression of Isoflavonoid Biosynthetic Genes in Soybean (Glycine max) Leaves.
    Journal of agricultural and food chemistry, 2016, Oct-05, Volume: 64, Issue:39

    Dietary isoflavones, daidzein and genistein are of huge interest in the nutraceutical field due to their practical application to postmenopause complications. This study is the first report an efficient method to prepare isoflavone rich soybean leaves (soyleaves) which is an edible food stuff in Asian countries. The preharvest treatment of ethylene highly stimulated the level of isoflavone in soyleaves. Annotation and quantification of metabolites were determined by UPLC-Q-TOF-MS and HPLC. Phenolic metabolites of soyleaves are mostly kaempferol glycosides, but not dietary isoflavones. The accumulated isoflavones by ethylene treatment were determined to be daidzin 1, genistin 2, malonyldaidzin 3 and malonylgenistin 4, which were easily hydrolyzed to daidzein and genistein by β-glucosidase. Total content of dietary isoflavones was increased up to 13854 μg/g. The most suitable condition was estimated to be 250 μg/g ethylene or 200 μg/g ethephon (ethylene donor) treatment at the R3 growth stage. The ratio of daidzein and genistein glycosides was approximately 5 to 3. The accumulated isoflavonoid biosynthesis pathway genes were identified within the transcriptome of soyleaves tissues at 1 day after treatment of ethephon. The quantitative RT-PCR analysis of these genes indicated significantly higher expression of CHS, CHI, IFS, HID, IF7GT, and IF7MaT compared to control leaves. These findings suggest that ethylene activates a set of structural genes involved in isoflavonoid biosynthesis, thereby leading to enhanced production of isoflavones in soybean plants.

    Topics: beta-Glucosidase; Chromatography, High Pressure Liquid; DNA, Complementary; Ethylenes; Genistein; Glucosides; Glycine max; Glycosides; Isoflavones; Plant Leaves; RNA, Plant; Tandem Mass Spectrometry

2016
Malonylglucoside conjugates of isoflavones are much less bioavailable compared with unconjugated β-glucosidic forms in rats.
    The Journal of nutrition, 2014, Volume: 144, Issue:5

    Despite considerable interest in the physiologic effects of isoflavones, the in vivo bioavailability of the most common isoflavone forms, malonylglucoside conjugates, has not been determined. Differences in the bioavailability of malonylglucosides compared with the nonconjugated β-glucoside forms may explain the inconsistent findings regarding the physiologic effects of isoflavones. Therefore, our objective was to determine the effect of malonyl- conjugation on isoflavone bioavailability in an animal model. Malonylgenistin and malonyldaidzin, and their corresponding nonconjugated glucosides, were extracted from soy grits and purified using liquid chromatography. Purity of the isolated forms was confirmed by nuclear magnetic resonance analysis. Male rats were gavaged with malonylgenistin, genistin, malonyldaidzin, or daidzin at a dose of 100 μmol/kg body weight. Blood and urine samples were collected at time intervals ranging from 0 to 48 h. Isoflavone metabolites in plasma and urine were determined using stable isotope dilution-liquid chromatography/mass spectrometry. Comparisons of pharmacokinetic variables were made between nonconjugated and conjugated glucosides and over time of plasma collection. The areas under the time-concentration curve of the metabolites in the plasma obtained after the administration of nonconjugated β-glucosides were 1 to 6 times higher than those of their respective malonylglucosides (P ≤ 0.05). Additionally, maximum plasma concentration and urinary excretion of isoflavone metabolites were significantly higher (1-9 times; P ≤ 0.05) after the administration of nonconjugated β-glucosides. To our knowledge, these results demonstrated, for the first time, that nonconjugated β-glucosides are relatively more bioavailable than their respective malonylglucosides. These differences in the bioavailability of conjugated and nonconjugated β-glucosides should be considered in future studies focused on the bioactivity of isoflavones.

    Topics: Administration, Oral; Animal Feed; Animals; Deuterium; Glucosides; Glycine max; Isoflavones; Male; Nuclear Magnetic Resonance, Biomolecular; Rats; Rats, Wistar

2014