5-phenylpent-4-enyl-1-hydroperoxide has been researched along with benzidine* in 2 studies
2 other study(ies) available for 5-phenylpent-4-enyl-1-hydroperoxide and benzidine
Article | Year |
---|---|
Mechanism of peroxidative activation of the bladder carcinogen 2-amino-4-(5-nitro-2-furyl)-thiazole (ANFT): comparison with benzidine.
The mechanism of activation of the bladder carcinogen 2-amino-4-(5-nitro-2-furyl)thiazole (ANFT) was investigated by comparison with benzidine. In comparison with benzidine, ANFT has a higher electrochemical potential (approximately 700 mV) and is less effective as a reducing co-substrate for either prostaglandin H synthase (PHS) or horseradish peroxidase. Activation was monitored by measuring binding to protein (BSA) and DNA. ANFT binding to protein was reduced by indomethacin, a fatty acid cyclooxygenase inhibitor; phenol and aminopyrine, competitive reducing co-substrates; ascorbic acid, an antioxidant; and glutathione, thioether conjugate formation. These results are consistent with those previously reported for benzidine and demonstrate a peroxide co-substrate requirement, interaction of peroxidase with amine, formation of reactive intermediates and inactivation of reactive intermediates. 5,5-Dimethyl-1-pyrroline N-oxide (DMPO), a radical trap, also reduced ANFT binding to protein. Similar results were observed whether activation by PHS or horseradish peroxidase was investigated. Peroxidative activation of ANFT and benzidine to bind DNA was inhibited by these test agents in a manner similar to that observed with protein except that DMPO did not reduce binding. In addition, 2-methyl-2-nitrosopropane and methyl viologen, which are radical traps, and methionine and p-nitrobenzyl-pyridine, which are strong nucleophiles, did not reduce ANFT or benzidine binding to DNA. These agents also did not prevent binding of benzidinediimine, the two-electron product of benzidine oxidation, to polydeoxyguanosine. Glutathione inhibited diimine binding by forming a conjugate. Results demonstrate that activation of ANFT to bind protein and DNA is similar to benzidine. Peroxidative activation of benzidine occurs by both one- and two-electron oxidation. A similar mechanism would explain ANFT binding to protein (one electron) and DNA (two electron). Topics: Alkenes; Benzidines; DNA; Electrochemistry; FANFT; Horseradish Peroxidase; Oxidation-Reduction; Peroxides; Prostaglandin-Endoperoxide Synthases | 1990 |
Mutagenic response of mouse lymphoma cells after activation of benzidine and 2-aminofluorene with purified prostaglandin H synthase.
The mutagenic response of L5178Y mouse lymphoma cells to the model aromatic amine carcinogens, benzidine (BNZ) and 2-aminofluorene (2-AF) in the presence of the mammalian peroxidase prostaglandin H synthase (PHS) was examined. Standard incubation conditions for mouse lymphoma cells and the PHS system were developed. The cells were exposed to BNZ and 2-AF with purified PHS in the presence or absence of a peroxide, 5-phenyl-4-pentenyl hydroperoxide (PPHP) which is required for PHS-dependent amine oxidation. Incubations were carried out in a medium consisting of Hanks' balanced salt solution with calcium and magnesium and 0.1% pluronic F-68. BNZ by itself or in the presence of PPHP induced a weak mutagenic response in mouse lymphoma cells, but the addition of PHS or PHS and its co-factor PPHP increased the mutagenic response approximately 5-fold over that observed in the absence of PHS. A maximal mutagenic response for BNZ was observed after incubation with the complete activating system, PHS and PPHP. These data are in agreement with the fact that BNZ is an excellent substrate for PHS. When 2-AF was incubated with mouse lymphoma cells, only a minimal mutagenic response was observed. Incubation of 2-AF with either PPHP or PPHP and PHS (complete peroxidase system produced a significant enhancement in mutagenic response. Thus, the mutagenic response of the mouse lymphoma cells to 2-AF was dependent on the peroxide, PPHP but not the enzyme PHS. These data suggest that 2-AF, which is a poor PHS substrate, is oxidized by a different catalyst than PHS. This work demonstrates that BNZ and 2-AF are converted by peroxide-dependent mechanisms to mutagens that can be detected in mammalian cells. Topics: Alkenes; Animals; Benzidines; Biotransformation; Fluorenes; Leukemia L5178; Mice; Mutagenicity Tests; Mutagens; Peroxides; Prostaglandin-Endoperoxide Synthases; Substrate Specificity; Tumor Cells, Cultured | 1990 |