5-nitro-2-(3-phenylpropylamino)benzoic acid and dizocilpine maleate

5-nitro-2-(3-phenylpropylamino)benzoic acid has been researched along with dizocilpine maleate in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (25.00)18.2507
2000's3 (75.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J1
Basarsky, TA; Feighan, D; MacVicar, BA1
Inoue, H; Okada, Y1

Other Studies

4 other study(ies) available for 5-nitro-2-(3-phenylpropylamino)benzoic acid and dizocilpine maleate

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
    Nature chemical biology, 2009, Volume: 5, Issue:10

    Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection

2009
Glutamate release through volume-activated channels during spreading depression.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1999, Aug-01, Volume: 19, Issue:15

    Topics: Animals; Anion Transport Proteins; Carrier Proteins; Chelating Agents; Cortical Spreading Depression; Dizocilpine Maleate; Egtazic Acid; Excitatory Amino Acid Antagonists; Furocoumarins; Glutamic Acid; In Vitro Techniques; Nitrobenzoates; Pipecolic Acids; Rats; Rats, Sprague-Dawley

1999
Roles of volume-sensitive chloride channel in excitotoxic neuronal injury.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2007, Feb-07, Volume: 27, Issue:6

    Topics: 2-Amino-5-phosphonovalerate; 4-Aminopyridine; Animals; Apoptosis; Benzothiadiazines; Bicuculline; Bumetanide; Cell Size; Cells, Cultured; Cerebral Cortex; Chlorides; Dendrites; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; GABA-A Receptor Antagonists; Glycolates; Ion Channels; Mice; Mice, Inbred C57BL; N-Methylaspartate; Necrosis; Neurons; Neurotoxins; Nitrobenzoates; Patch-Clamp Techniques; Phloretin; Picrotoxin; Potassium Channel Blockers; Potassium Channels; Quinine; Receptors, N-Methyl-D-Aspartate; Sodium Chloride Symporter Inhibitors; Sodium Chloride Symporters; Somatosensory Cortex; Tetrodotoxin

2007