5-methyldeoxycytidine and 5-hydroxymethyl-2--deoxyuridine

5-methyldeoxycytidine has been researched along with 5-hydroxymethyl-2--deoxyuridine* in 2 studies

Other Studies

2 other study(ies) available for 5-methyldeoxycytidine and 5-hydroxymethyl-2--deoxyuridine

ArticleYear
Comparison of the absolute level of epigenetic marks 5-methylcytosine, 5-hydroxymethylcytosine, and 5-hydroxymethyluracil between human leukocytes and sperm.
    Biology of reproduction, 2014, Volume: 91, Issue:3

    5-Methylcytosine is one of the most important epigenetic modifications and has a profound impact on embryonic development. After gamete fusion, there is a widespread and rapid active demethylation process of sperm DNA, which suggests that the paternal epigenome has an important role during embryonic development. To better understand the epigenome of sperm DNA and its possible involvement in a developing embryo, we determined epigenetic marks in human sperm DNA and in surrogate somatic tissue leukocytes; the analyzed epigenetic modifications included 5-methyl-2'-deoxycytidine, 5-hydroxymethyl-2'-deoxycytidine, and 5-hydroxymethyl-2'-deoxyuridine. For absolute determination of the modification, we used liquid chromatography with UV detection and tandem mass spectrometry techniques with isotopically labeled internal standards. Our analyses demonstrated, for the first time to date, that absolute global values of 5-methyl-2'-deoxycytidine, 5-hydroxymethyl-2'-deoxycytidine, and 5-hydroxymethyl-2'-deoxyuridine in sperm are highly statistically different from those observed for leukocyte DNA, with respective mean values of 3.815% versus 4.307%, 0.797 versus 2.945 per 10⁴ deoxynucleosides, and 5.209 versus 0.492 per 10⁶ deoxynucleosides. We hypothesize that an exceptionally high value of 5-hydroxymethyluracil in sperm (>10-fold higher than in leukocytes) may play a not yet recognized regulatory role in the paternal genome.

    Topics: 5-Methylcytosine; Adult; Biomarkers; Chromatography, High Pressure Liquid; Cytosine; Deoxycytidine; DNA; DNA Methylation; Epigenesis, Genetic; Humans; Leukocytes; Male; Pentoxyl; Poland; Spectrometry, Mass, Electrospray Ionization; Spermatozoa; Tandem Mass Spectrometry; Thymidine; Up-Regulation

2014
Detection of oxidation products of 5-methyl-2'-deoxycytidine in Arabidopsis DNA.
    PloS one, 2013, Volume: 8, Issue:12

    Epigenetic regulations play important roles in plant development and adaptation to environmental stress. Recent studies from mammalian systems have demonstrated the involvement of ten-eleven translocation (Tet) family of dioxygenases in the generation of a series of oxidized derivatives of 5-methylcytosine (5-mC) in mammalian DNA. In addition, these oxidized 5-mC nucleobases have important roles in epigenetic remodeling and aberrant levels of 5-hydroxymethyl-2'-deoxycytidine (5-HmdC) were found to be associated with different types of human cancers. However, there is a lack of evidence supporting the presence of these modified bases in plant DNA. Here we reported the use of a reversed-phase HPLC coupled with tandem mass spectrometry method and stable isotope-labeled standards for assessing the levels of the oxidized 5-mC nucleosides along with two other oxidatively induced DNA modifications in genomic DNA of Arabidopsis. These included 5-HmdC, 5-formyl-2'-deoxycytidine (5-FodC), 5-carboxyl-2'-deoxycytidine (5-CadC), 5-hydroxymethyl-2'-deoxyuridine (5-HmdU), and the (5'S) diastereomer of 8,5'-cyclo-2'-deoxyguanosine (S-cdG). We found that, in Arabidopsis DNA, the levels of 5-HmdC, 5-FodC, and 5-CadC are approximately 0.8 modifications per 10(6) nucleosides, with the frequency of 5-HmdC (per 5-mdC) being comparable to that of 5-HmdU (per thymidine). The relatively low levels of the 5-mdC oxidation products suggest that they arise likely from reactive oxygen species present in cells, which is in line with the lack of homologous Tet-family dioxygenase enzymes in Arabidopsis.

    Topics: Arabidopsis; Chromatography, High Pressure Liquid; Deoxycytidine; Deoxycytidine Monophosphate; DNA, Plant; Epigenesis, Genetic; Fluoresceins; Isotope Labeling; Molecular Structure; Nucleosides; Oxidation-Reduction; Tandem Mass Spectrometry; Thymidine

2013