5-hydroxyprimaquine has been researched along with 5-5-dimethyl-1-pyrroline-1-oxide* in 2 studies
2 other study(ies) available for 5-hydroxyprimaquine and 5-5-dimethyl-1-pyrroline-1-oxide
Article | Year |
---|---|
Oxidative activity of primaquine metabolites on rat erythrocytes in vitro and in vivo.
The oxidative activities of primaquine [6-methoxy-8-(4-amino-1-methylbutylamino)quinoline] and its metabolites, the quinone-imine derivatives of 5-hydroxyprimaquine [5-hydroxy-6-methoxy-8-(4-amino-1-methylbutylamino)quinoline] and 5-hydroxydemethylprimaquine [5-hydroxy-6-demethyl-8-(4-amino-1-methylbutylamino)quinoline], 6-methoxy-8-amino quinoline and hydrogen peroxide, were studied on rat erythrocytes in vitro and in vivo. In both cases, the most effective metabolites in oxidizing hemoglobin and depleting non-protein sulfhydryl groups from erythrocytes were the quinone-imine derivatives of the ring-hydroxylated metabolites, 5-hydroxyprimaquine and 5-hydroxydemethyl-primaquine. The latter quinone-imines were shown by light absorption spectroscopy and oxygen consumption studies to be able to oxidize purified rat hemoglobin to methemoglobin but to be unable to react directly with reduced glutathione. In agreement with these results, no radical adduct was detected by electron paramagnetic resonance spectroscopy in incubations of rat erythrocytes with the quinone-imines and the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide; metabolite-derived free radicals were detected instead. Taken together, the results suggest that 5-hydroxyprimaquine and 5-hydroxydemethylprimaquine are important metabolites in the expression of primaquine hemotoxicity, in contrast to 6-methoxy-8-aminoquinoline. Additionally, the results indicate that hydrogen peroxide is the ultimate oxidant formed from the ring-hydroxylated metabolites by redox-cycling of the corresponding quinone-imine derivatives both in vitro and in vivo. Topics: Animals; Biotransformation; Cyclic N-Oxides; Electron Spin Resonance Spectroscopy; Erythrocytes; Hydrogen Peroxide; Imines; Male; Methemoglobin; Oxidation-Reduction; Primaquine; Quinones; Rats; Rats, Wistar | 1994 |
ESR detection of free radical intermediates during autoxidation of 5-hydroxyprimaquine.
Autoxidation of 5-hydroxyprimaquine, a putative metabolite of the antimalarial primaquine, was studied by oxygen consumption and ESR spectroscopy. 5-Hydroxyprimaquine underwent fast autoxidation under mild conditions (pH 7.4-8.5, 25 degrees C, and presence of 1 mM diethylenetriamine pentaacetic acid); each mol of the drug consumed 0.75 mol of oxygen and formed 0.5 mol of hydrogen peroxide. Direct-ESR experiments demonstrated that 5-hydroxyprimaquine autoxidation was accompanied by generation of a drug-derived free radical that is oxygen sensitive. Generation of hydroxyl radical was also established by spin-trapping experiments in the presence of 5,5-dimethyl-1-pyrroline N-oxide. The effect of antioxidant enzymes on hydroxyl radical adduct yield and analysis of autoxidation stoichiometry suggest that the main route for hydroxyl radical generation is the iron-catalyzed reaction between the drug-derived free radical and hydrogen peroxide. Topics: Cyclic N-Oxides; Electron Spin Resonance Spectroscopy; Free Radicals; Hydroxides; Hydroxyl Radical; Oxidation-Reduction; Oxygen Consumption; Primaquine; Spin Labels | 1990 |