Page last updated: 2024-08-24

5-hydroxyflavone and galangin

5-hydroxyflavone has been researched along with galangin in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (37.50)18.2507
2000's2 (25.00)29.6817
2010's2 (25.00)24.3611
2020's1 (12.50)2.80

Authors

AuthorsStudies
Constantinou, A; Mehta, R; Moon, R; Rao, K; Runyan, C; Vaughan, A1
Jacobson, KA; Ji, XD; Melman, N1
Jacobson, KA; Moro, S; Sanders, LH; van Rhee, AM1
Brun, R; Lack, G; Perozzo, R; Rüedi, P; Scapozza, L; Tasdemir, D1
Akamatsu, M; Hosoda, A; Hotta, Y; Ishimoto, Y; Nishizaki, Y; Tamura, H; Yoshikawa, H1
Amić, D; Lucić, B1
Dutour, R; Poirier, D1
Fernandes, E; Fernandes, PA; Freitas, M; Oliveira, A; Proença, C; Ramos, MJ; Ribeiro, D; Silva, AMS; Sousa, JLC1

Reviews

1 review(s) available for 5-hydroxyflavone and galangin

ArticleYear
Inhibitors of cytochrome P450 (CYP) 1B1.
    European journal of medicinal chemistry, 2017, Jul-28, Volume: 135

    Topics: Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Structure; Structure-Activity Relationship

2017

Other Studies

7 other study(ies) available for 5-hydroxyflavone and galangin

ArticleYear
Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships.
    Journal of natural products, 1995, Volume: 58, Issue:2

    Topics: DNA Damage; DNA Topoisomerases, Type I; DNA Topoisomerases, Type II; Electrophoresis, Agar Gel; Flavonoids; Hydroxylation; Plasmids; Protein Conformation; Structure-Activity Relationship; Topoisomerase I Inhibitors; Topoisomerase II Inhibitors

1995
Interactions of flavonoids and other phytochemicals with adenosine receptors.
    Journal of medicinal chemistry, 1996, Feb-02, Volume: 39, Issue:3

    Topics: Animals; Cell Line; CHO Cells; Cricetinae; Flavonoids; Humans; Magnetic Resonance Spectroscopy; Plants; Protein Binding; Radioligand Assay; Rats; Receptors, Purinergic P1

1996
Flavonoid derivatives as adenosine receptor antagonists: a comparison of the hypothetical receptor binding site based on a comparative molecular field analysis model.
    Journal of medicinal chemistry, 1998, Jan-01, Volume: 41, Issue:1

    Topics: Binding Sites; Computer Simulation; Flavonoids; Kinetics; Least-Squares Analysis; Models, Molecular; Molecular Conformation; Molecular Structure; Purinergic P1 Receptor Antagonists; Receptor, Adenosine A3; Receptors, Purinergic P1; Regression Analysis; Reproducibility of Results; Static Electricity; Structure-Activity Relationship

1998
Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids.
    Journal of medicinal chemistry, 2006, Jun-01, Volume: 49, Issue:11

    Topics: 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase; Alcohol Oxidoreductases; Animals; Antimalarials; Catechin; Cells, Cultured; Chloroquine; Drug Resistance; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH); Fatty Acids; Flavones; Flavonoids; Humans; Hydro-Lyases; Kinetics; Luteolin; Phenols; Plasmodium falciparum; Polyphenols; Structure-Activity Relationship

2006
Effect of flavonoids on androgen and glucocorticoid receptors based on in vitro reporter gene assay.
    Bioorganic & medicinal chemistry letters, 2009, Aug-15, Volume: 19, Issue:16

    Topics: Androgen Receptor Antagonists; Androgens; Cell Line, Tumor; Flavonoids; Genes, Reporter; Humans; Receptors, Androgen; Receptors, Glucocorticoid; Structure-Activity Relationship

2009
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics

2010
Structural Specificity of Flavonoids in the Inhibition of Human Fructose 1,6-Bisphosphatase.
    Journal of natural products, 2020, 05-22, Volume: 83, Issue:5

    Topics: Drug Design; Enzyme Inhibitors; Flavonoids; Fructose; Fructose-Bisphosphatase; Humans; Hypoglycemic Agents; Liver; Molecular Structure

2020