5-hydroxydecanoate has been researched along with n-(1-methylethyl)-1,1,2-trimethylpropylamine in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Ding, JH; Hu, G; Liu, SY; Liu, X; Long, Y; Sun, YH; Wang, F; Wang, H; Wu, J; Yang, Y; Yao, HH | 1 |
Ding, JH; Hu, G; Liu, X; Sun, XL; Wu, JY; Yang, Y; Yao, HH; Zhou, F | 1 |
Ding, JH; Hu, G; Yang, YJ; Zhang, S; Zhou, F | 1 |
3 other study(ies) available for 5-hydroxydecanoate and n-(1-methylethyl)-1,1,2-trimethylpropylamine
Article | Year |
---|---|
Activation of mitochondrial ATP-sensitive potassium channels improves rotenone-related motor and neurochemical alterations in rats.
Topics: Animals; Antiparkinson Agents; Basal Ganglia; Catalepsy; Decanoic Acids; Diazoxide; Disease Models, Animal; Dopamine; Hydroxy Acids; Levodopa; Male; Motor Activity; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Parkinsonian Disorders; Potassium Channel Blockers; Potassium Channels; Propylamines; Rats; Rats, Sprague-Dawley; RNA, Messenger; Rotenone; Substantia Nigra | 2006 |
The regulation of rotenone-induced inflammatory factor production by ATP-sensitive potassium channel expressed in BV-2 cells.
Topics: Animals; ATP-Binding Cassette Transporters; Blotting, Western; Cell Line; Decanoic Acids; Drug Interactions; Gene Expression Regulation; Glyburide; Hydroxy Acids; Mice; Microglia; Nitric Oxide Synthase Type II; Pinacidil; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Inwardly Rectifying; Propylamines; Receptors, Drug; Rotenone; Sulfonylurea Receptors; Tumor Necrosis Factor-alpha | 2006 |
Iptakalim protects against MPP+-induced degeneration of dopaminergic neurons in association with astrocyte activation.
Topics: 1-Methyl-4-phenylpyridinium; Analysis of Variance; Animals; Animals, Newborn; Astrocytes; Brain Stem; Cell Death; Cells, Cultured; Decanoic Acids; Diazoxide; Disease Models, Animal; Dopamine; Dose-Response Relationship, Drug; Ectodysplasins; Enzyme-Linked Immunosorbent Assay; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Hydroxy Acids; Male; Motor Activity; MPTP Poisoning; Nerve Degeneration; Neurons; Neuroprotective Agents; p38 Mitogen-Activated Protein Kinases; Potassium Channel Blockers; Propylamines; Random Allocation; Rats; Rats, Sprague-Dawley; Substantia Nigra; Tumor Necrosis Factor-alpha; Tyrosine 3-Monooxygenase | 2009 |