5-formyluracil has been researched along with thymine-glycol* in 2 studies
2 other study(ies) available for 5-formyluracil and thymine-glycol
Article | Year |
---|---|
Structural and functional properties of CiNTH, an endonuclease III homologue of the ascidian Ciona intestinalis: critical role of N-terminal region.
Oxidatively damaged bases in DNA can cause cell death, mutation and/or cancer induction. To overcome such deleterious effects of DNA base oxidation, cells are equipped with base excision repair (BER) initiated by DNA glycosylases. Endonuclease III (Nth), a major DNA glycosylase, mainly excises oxidatively damaged pyrimidines from DNA. The aims of this study were to obtain an overview of the repair mechanism of oxidatively damaged bases and to elucidate the function of BER in maintaining genome stability during embryogenesis and development. In this study, we used the ascidian Ciona intestinalis because at every developmental stage it is possible to observe the phenotype of individuals with DNA damage or mutations. Sequence alignment analysis revealed that the amino acid sequence of Ciona intestinalis Nth homologue (CiNTH) had high homology with those of Escherichia coli, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and human Nth homologues. It was evident that two domains, the Helix-hairpin-Helix and 4Fe-4S cluster domains that are critical regions for the Nth activity, are well conserved in CiNTH. CiNTH efficiently complemented the sensitivity of E. coli nth nei mutant to H(2)O(2). CiNTH was bifunctional, with DNA glycosylase and AP lyase activities. It removed thymine glycol, 5-formyluracil and 8-oxoguanine paired with G from DNA via a β-elimination reaction. Interestingly, the N-terminal 44 amino acids were essential for the DNA glycosylase activity of CiNTH. Topics: Amino Acid Sequence; Animals; Ciona intestinalis; Deoxyribonuclease (Pyrimidine Dimer); DNA; DNA Damage; DNA Glycosylases; DNA Repair; Escherichia coli; Gene Expression Regulation; Guanine; Humans; Hydrogen Peroxide; Molecular Sequence Data; Reactive Oxygen Species; Sequence Alignment; Thymine; Uracil | 2012 |
DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the hNEIL1 and hNTH1 enzymes in human cells.
Bacteria and eukaryotes possess redundant activities that recognize and remove oxidatively damaged bases from DNA through base excision repair. DNA glycosylases excise damaged bases to initiate the base excision repair pathway. hOgg1 and hNTH1, homologues of E. coli MutM and Nth, respectively, had been identified and characterized in human cells. Recent works revealed that human cells have three orthologues of E. coli Nei, hNEIL1, hNEIL2 and hNEIL3. In the present experiments, hNEIL1 protected the E. coli nth nei mutant from lethal effect of hydrogen peroxide and high frequency of spontaneous mutations under aerobic conditions. Furthermore, hNEIL1 efficiently cleaved double stranded oligonucleotides containing 5-formyluracil (5-foU) and 5-hydroxymethyluracil (5-hmU) in vitro via beta- and delta-elimination reactions. Similar activities were detected with hNTH1. These results indicate that hNEIL1 and hNTH1 are DNA glycosylases that excise 5-foU and 5-hmU as efficiently as Tg in human cells. Topics: Cloning, Molecular; Deoxyribonuclease (Pyrimidine Dimer); DNA Glycosylases; DNA Repair; DNA, Complementary; Escherichia coli; Humans; Hydrogen Peroxide; Mutation; Oligonucleotides; Pentoxyl; Thymine; Uracil | 2005 |