5-formyluracil has been researched along with 8-hydroxyguanine* in 2 studies
2 other study(ies) available for 5-formyluracil and 8-hydroxyguanine
Article | Year |
---|---|
Structural and functional properties of CiNTH, an endonuclease III homologue of the ascidian Ciona intestinalis: critical role of N-terminal region.
Oxidatively damaged bases in DNA can cause cell death, mutation and/or cancer induction. To overcome such deleterious effects of DNA base oxidation, cells are equipped with base excision repair (BER) initiated by DNA glycosylases. Endonuclease III (Nth), a major DNA glycosylase, mainly excises oxidatively damaged pyrimidines from DNA. The aims of this study were to obtain an overview of the repair mechanism of oxidatively damaged bases and to elucidate the function of BER in maintaining genome stability during embryogenesis and development. In this study, we used the ascidian Ciona intestinalis because at every developmental stage it is possible to observe the phenotype of individuals with DNA damage or mutations. Sequence alignment analysis revealed that the amino acid sequence of Ciona intestinalis Nth homologue (CiNTH) had high homology with those of Escherichia coli, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and human Nth homologues. It was evident that two domains, the Helix-hairpin-Helix and 4Fe-4S cluster domains that are critical regions for the Nth activity, are well conserved in CiNTH. CiNTH efficiently complemented the sensitivity of E. coli nth nei mutant to H(2)O(2). CiNTH was bifunctional, with DNA glycosylase and AP lyase activities. It removed thymine glycol, 5-formyluracil and 8-oxoguanine paired with G from DNA via a β-elimination reaction. Interestingly, the N-terminal 44 amino acids were essential for the DNA glycosylase activity of CiNTH. Topics: Amino Acid Sequence; Animals; Ciona intestinalis; Deoxyribonuclease (Pyrimidine Dimer); DNA; DNA Damage; DNA Glycosylases; DNA Repair; Escherichia coli; Gene Expression Regulation; Guanine; Humans; Hydrogen Peroxide; Molecular Sequence Data; Reactive Oxygen Species; Sequence Alignment; Thymine; Uracil | 2012 |
The effect of experimental conditions on the levels of oxidatively modified bases in DNA as measured by gas chromatography-mass spectrometry: how many modified bases are involved? Prepurification or not?
Recently, an artifactual formation of a number of modified DNA bases has been alleged during derivatization of DNA hydrolysates to be analyzed by gas chromatography-mass spectrometry (GC-MS). These modified bases were 8-hydroxyguanine (8-OH-Gua), 5-hydroxycytosine (5-OH-Cyt), 8-hydroxyadenine (8-OH-Ade), 5-hydroxymethyluracil (5-OHMeUra), and 5-formyluracil, which represent only a small percentage of more than 20 modified DNA bases that can be analyzed by GC-MS. However, relevant papers reporting the levels of these modified bases in DNA of various sources have not been cited, and differences in experimental procedures have not been discussed. We investigated the levels of modified bases in calf thymus DNA by GC-MS using derivatization at three different temperatures. The results obtained with GC/isotope-dilution MS showed that the levels of 5-OH-Cyt, 8-OH-Ade, 5-OH-Ura, and 5-OHMeUra were not affected by increasing the derivatization temperature from 23 degrees C to 120 degrees C. The level of 8-OH-Gua was found to be higher at 120 degrees C. However, this level was much lower than those reported previously. Formamidopyrimidines were readily analyzed in contrast to some recent claims. The addition of trifluoroacetic acid (TFA) adversely affected the levels of pyrimidine-derived lesions, suggesting that TFA is not suitable for simultaneous measurement of both pyrimidine- and purine-derived lesions. The data obtained were also compared with those previously published. Our data and this comparison indicate that no artifactual formation of 5-OH-Cyt, 8-OH-Ade, and 5-OHMeUra occurred under our experimental conditions in contrast to recent claims, and no prepurification of DNA hydrolysates by a tedious procedure is necessary for accurate quantification of these compounds. The artifactual formation of 8-OH-Gua can be eliminated by derivatization at room temperature for at least 2 h, without the use of TFA. The results in this article and their comparison with published data indicate that different results may be obtained in different laboratories using different experimental conditions. The data obtained in various laboratories should be compared by discussing all relevant published data and scientific facts, including differences between experimental conditions used in different laboratories. Topics: Adenine; Animals; Artifacts; Cattle; Cytosine; DNA; Gas Chromatography-Mass Spectrometry; Guanine; Hydrolysis; Nucleotides; Oxidation-Reduction; Pentoxyl; Trifluoroacetic Acid; Uracil | 1999 |