5-formyluracil has been researched along with 5-formylcytosine* in 5 studies
1 review(s) available for 5-formyluracil and 5-formylcytosine
Article | Year |
---|---|
Chemoselective labeling and site-specific mapping of 5-formylcytosine as a cellular nucleic acid modification.
DNA methylation has a profound impact on the regulation of gene expression in normal cell development, and aberrant methylation has been recognized as a key factor in the pathogenesis of human diseases such as cancer. The discovery of modified nucleobases arising from 5-methylcytosine (5mC) through consecutive oxidation to give 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) has stimulated intense research efforts regarding the biological functions of these epigenetic marks. This Review focuses on the sensitive detection and quantitation of 5fC in DNA and RNA by chemoselective labeling, which aims at discriminating between 5fC and its thymine counterpart 5-formyluracil (5fU), and summarizes single-base resolution sequencing methods for locus-specific mapping of 5mC and its oxidized derivatives. Topics: Animals; Cytosine; DNA; Epigenesis, Genetic; Fluorescent Dyes; Humans; RNA; Uracil | 2018 |
4 other study(ies) available for 5-formyluracil and 5-formylcytosine
Article | Year |
---|---|
Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates.
The propensity of 5-formyluracil and 5-formylcytosine, i.e. oxidative lesions and epigenetic intermediates, in acting as intrinsic DNA photosensitizers is unraveled by using a combination of molecular modeling, simulation and spectroscopy. Exploration of potential energy surfaces and non-adiabatic dynamics confirm a higher intersystem crossing rate for 5-formyluracil, whereas the kinetic models evidence different equilibria in the excited states for both compounds. Topics: Computer Simulation; Cytosine; DNA; Epigenesis, Genetic; Humans; Kinetics; Light; Models, Molecular; Mutagens; Oxidation-Reduction; Uracil | 2020 |
Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates.
Interaction of nucleic acids with light is a scientific question of paramount relevance not only in the understanding of life functioning and evolution, but also in the insurgence of diseases such as malignant skin cancer and in the development of biomarkers and novel light-assisted therapeutic tools. This work shows that the UVA portion of sunlight, not absorbed by canonical DNA nucleobases, can be absorbed by 5-formyluracil (ForU) and 5-formylcytosine (ForC), two ubiquitous oxidatively generated lesions and epigenetic intermediates present in living beings in natural conditions. We measure the strong propensity of these molecules to populate triplet excited states able to transfer the excitation energy to thymine-thymine dyads, inducing the formation of cyclobutane pyrimidine dimers (CPDs). By using steady-state and transient absorption spectroscopy, NMR, HPLC, and theoretical calculations, we quantify the differences in the triplet-triplet energy transfer mediated by ForU and ForC, revealing that the former is much more efficient in delivering the excitation energy and producing the CPD photoproduct. Although significantly slower than ForU, ForC is also able to harm DNA nucleobases and therefore this process has to be taken into account as a viable photosensitization mechanism. The present findings evidence a rich photochemistry crucial to understand DNA damage photobehavior. Topics: Cytosine; Dimerization; DNA Damage; Epigenesis, Genetic; Oxidation-Reduction; Photochemistry; Sunlight; Thymine; Ultraviolet Rays; Uracil | 2020 |
Detection and Application of 5-Formylcytosine and 5-Formyluracil in DNA.
Nucleic acids contain a variety of different base modifications, such as decoration at the fifth position of cytosine, which is one of the most important epigenetic modifications. Nucleic acid epigenetics mediate a wide variety of biological processes, including embryonic development and gene regulation, genomic imprinting, differentiation, and X-chromosome inactivation. Furthermore, the modification level can be aberrantly expressed in distinct sets of tissue that can indicate different tumor onsets and canceration. Thus, the analysis of modified nucleobases may contribute to the understanding of epigenetic modification-related biological processes and the correlation of modified nucleobase patterns with disease states for clinical diagnosis and treatment. In addition to 5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine are found in organisms at a low content but are nevertheless extremely important chemical modifications, and 5-hydroxyuracil and 5-formyluracil compounds are also present. 5-Formyluracil is found in bacteriophages, prokaryotes, and mammalian cells. The 5-formyluracil content is higher in certain cancer tissues than in the normal tissues adjacent to the tumor. The content of 5-formyluracil in different cell tissues may have cell type specificity. With the continuous use of chemical tools, new detection technologies have greatly advanced the research on natural pyrimidine modifications. These modifications dynamically regulate the gene expression in eukaryotes and prokaryotes and provide mechanistic insights into the occurrence of diseases. Natural pyrimidine modifications act not only as intermediates for DNA demethylation or oxidative damage products but also as modulators of gene expression. Therefore, the development of more effective chemical tools will help us better understand the dynamic changes of natural pyrimidine modifications in vivo. In this Account, we summarize the recent advanced techniques for the detection of 5-formylpyrimidine (5-formylcytosine and 5-formyluracil) and highlight their great potential as biomarkers in biomedical applications. Focusing on the great urgency for the detection of epigenetic modifications, our group developed a series of methods for the qualitative and quantitative analysis of 5-formylpyrimidine in the past few years, aiming at facilitating the accurate detection and mapping of these epigenetic modifications. By the construction of probes, 5-formylpyrimidine can Topics: Biomarkers, Tumor; Colorectal Neoplasms; Cytosine; DNA; Fluorescent Dyes; Humans; Mass Spectrometry; Uracil | 2019 |
Combining Wittig Olefination with Photoassisted Domino Reaction To Distinguish 5-Formylcytosine from 5-Formyluracil.
In view of the important epigenetic functions of 5-formylcytosine (5fC), the development of quantitative detection methods for 5fC is a long-standing issue. In this regard, how to distinguish 5fC from 5-formyluracil to achieve higher accuracy is particularly difficult because the latter one is more reactive. Herein, we reported a phosphorus ylide, Topics: Cytosine; Epigenomics; Fluorescence; Gamma Rays; Mutation; Uracil | 2019 |