5-formyluracil has been researched along with 5-6-dihydrothymine* in 3 studies
3 other study(ies) available for 5-formyluracil and 5-6-dihydrothymine
Article | Year |
---|---|
Side-by-side comparison of DNA damage induced by low-energy electrons and high-energy photons with solid TpTpT trinucleotide.
The genotoxic effects of high-energy ionizing radiation have been largely attributed to the ionization of H2O leading to hydroxyl radicals and the ionization of DNA leading mostly to damage through base radical cations. However, the contribution of low-energy electrons (LEEs; ≤ 10 eV), which involves subionization events, has been considered to be less important than that of hydroxyl radicals and base radical cations. Here, we compare the ability of LEEs and high-energy X-ray photons to induce DNA damage using dried thin films of TpTpT trinucleotide as a simple and representative model for DNA damage. The main radiation-induced damage of TpTpT as measured by high-performance liquid chromatography (HPLC) with UV detection and HPLC coupled to tandem mass spectrometry analyses included thymine release (-Thy), strand breaks (pT, Tp, pTpT, TpTp, and TpT), and the formation of base modifications [5,6-dihydrothymine (5,6-dhT), 5-hydroxymethyluracil (5-hmU), and 5-formyluracil (5-fU)]. The global profile of products was very similar for both types of radiation indicating converging pathways of formation. The percent damage of thymine release, fragmentation, and base modification was 20, 19, and 61 for high-energy X-rays, respectively, compared to 35, 13, and 51 for LEEs (10 eV). Base release was significantly lower for X-rays. In both cases, phosphodiester bond cleavage gave mononucleotides (pT and Tp) and dinucleotides (pTpT and TpTp) containing a terminal phosphate as the major fragments. For base modifications, the ratio of reductive (5,6-dhT) to oxidative products (5-hmU plus 5-fU) was 0.9 for high-energy X-rays compared to 1.7 for LEEs. These results indicate that LEEs give a similar profile of products compared to ionizing radiation. Topics: Chromatography, High Pressure Liquid; DNA Damage; Electrons; Oligonucleotides; Pentoxyl; Photons; Radiation, Ionizing; Tandem Mass Spectrometry; Thymine; Uracil | 2013 |
Qualitative and quantitative analyses of the decomposition products that arise from the exposure of thymine to monochromatic ultrasoft X rays and 60Co gamma rays in the solid state.
HPLC analyses of condensed thymine irradiated with monochromatic synchrotron ultrasoft X rays in the energy region around nitrogen and oxygen K-shell edges were performed. Cobalt-60 gamma rays were used as a reference radiation. The radiation chemical dose response of each separated thymine decomposition product was also determined. Uracil (U), 5-(hydroxymethyl)uracil (HMU), 5,6-dihydrothymine (DHT), 5-formyluracil (foU) and four main unknown products were found in the HPLC chromatogram of the sample irradiated with ultrasoft X rays in vacuo. Similar spectra of the products were also found in the gamma-ray experiment; however, some unknown products that appeared after elution of the thymine peak were significantly larger than those in the ultrasoft X- ray experiment. This result indicates the difference in radiation quality. The G value of DHT produced by gamma radiation was 10 times larger than those produced by the ultrasoft X- ray photons with energies of 395 and 407 eV corresponding to below and on the nitrogen K-shell edge, respectively. This result suggests that the differences in the photon energy and/ or in the energy spectra of the secondary electron between ultrasoft X rays and gamma rays are causing differences in the process of the radiation chemistry. Moreover, the yields of all the thymine decomposition products induced by 538 eV photons (oxygen K-shell edge) were significantly smaller than those induced by photons around the nitrogen K-shell edge. The K-shell excitation of oxygen in thymine may efficiently promote the production of small thymine fragments susceptible to desorption from the sample. Topics: Calibration; Chromatography, High Pressure Liquid; Cobalt Radioisotopes; DNA; DNA Damage; DNA Repair; Dose-Response Relationship, Radiation; Gamma Rays; Models, Chemical; Nitrogen; Oxygen; Pentoxyl; Photons; Spectrophotometry; Synchrotrons; Thymine; Time Factors; Uracil; X-Rays | 2004 |
A non-heme iron protein with heme tendencies: an investigation of the substrate specificity of thymine hydroxylase.
Thymine hydroxylase from Rhodotorula glutinis catalyzes the oxidation of thymine to its alcohol, aldehyde, and carboxylic acid in three successive reactions. Each step involves stoichiometric consumption of O2 and alpha-ketoglutarate and formation of CO2 and succinate. Given the promiscuity of this enzyme, it was hoped that it would serve as a prototype for understanding the mechanism of this class of enzymes, the non-heme Fe2+ dioxygenases. Kinetic parameters for thymine, O2, Fe2+, and alpha-ketoglutarate have been determined, and isotope effect analysis of (trideuteriomethyl)thymine with enzyme reveals D(V) = 2.08 and D(V/K) = 1.11 at saturating O2. The kinetic parameters for (hydroxymethyl)uracil oxidation have been determined, and incubation of (5'-R)- and (5'-S)-[5'-2H]-5-(hydroxymethyl)uracil with enzyme reveals stereospecific removal of the pro-S hydrogen. No apparent isotope effect is observed in this reaction. The substrate specificity of this enzyme has been examined in detail. The enzyme can catalyze epoxidation, oxidation of a thioether to a sulfoxide and a sulfone, hydroxylation of an unactivated carbon-hydrogen bond, and oxidation of a methylamine to formaldehyde, as revealed through studies with 5-vinyluracil, 5-(methylthio)uracil, 5,6-dihydrothymine, and 1-methylthymine, respectively. In each case, the products were identified by gas chromatography-mass spectrometry, and 18O2-labeling studies revealed that one atom from O2 is incorporated into each product. The enzyme has also been shown to catalyze an uncoupling of hydroxylation and decarboxylation in the presence of a substrate analog incapable of undergoing hydroxylation or a substrate that is difficult to oxidize.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Amino Acid Sequence; Carboxylic Acids; Catalysis; Heme; Hydroxylation; Iron; Kinetics; Metalloproteins; Mixed Function Oxygenases; Molecular Sequence Data; Neurospora crassa; Nonheme Iron Proteins; Oxidation-Reduction; Rhodotorula; Stereoisomerism; Substrate Specificity; Thymine; Uracil | 1993 |