5-6-epoxycholesterol and 7-ketocholesterol

5-6-epoxycholesterol has been researched along with 7-ketocholesterol* in 7 studies

Other Studies

7 other study(ies) available for 5-6-epoxycholesterol and 7-ketocholesterol

ArticleYear
5
    Oxidative medicine and cellular longevity, 2019, Volume: 2019

    Cholesterol oxidation products have an established proatherogenic and cytotoxic effect. An increased exposure to these substances may be associated with the development of atherosclerosis and cancers. Relatively little, though, is known about the effect of phytosterol oxidation products, although phytosterols are present in commonly available and industrial food products. Thus, the aim of the research was to assess the effect of 5. The animals were divided into 3 groups and exposed to nutritional sterols by receiving feed containing 5. During the experiment, the levels of lipid peroxidation products increased, such as CD and anti-7-ketocholesterol antibodies. At the same time, the plasma levels of FRAP and serum activity of PON1 decreased alongside the reduced activity of GPx, GR, and SOD in RBCs. There was no effect of the studied compounds on the plasma MDA levels or on the activity of CAT and GST in RBCs.. Both 5

    Topics: Animals; Antibodies; Antioxidants; Aryldialkylphosphatase; Catalase; Cholesterol; Diet; Erythrocytes; Glutathione Peroxidase; Glutathione Reductase; Ketocholesterols; Male; Malondialdehyde; Oxidative Stress; Phytosterols; Rats; Rats, Wistar; Superoxide Dismutase

2019
Derangement of intestinal epithelial cell monolayer by dietary cholesterol oxidation products.
    Free radical biology & medicine, 2017, Volume: 113

    The emerging role of the diet in the incidence of intestinal inflammatory diseases has stimulated research on the influence of eating habits with pro-inflammatory properties in inducing epithelial barrier disturbance. Cholesterol oxidation products, namely oxysterols, have been shown to promote and sustain oxidative/inflammatory reactions in human digestive tract. This work investigated in an in vitro model the potential ability of a combination of dietary oxysterols representative of a hyper-cholesterol diet to induce the loss of intestinal epithelial layer integrity. The components of the experimental mixture were the main oxysterols stemming from heat-induced cholesterol auto-oxidation, namely 7-ketocholesterol, 5α,6α-and 5β,6β-epoxycholesterol, 7α- and 7β-hydroxycholesterol. These compounds added to monolayers of differentiated CaCo-2 cells in combination or singularly, caused a time-dependent induction of matrix metalloproteinases (MMP)-2 and -9, also known as gelatinases. The hyperactivation of MMP-2 and -9 was found to be associated with decreased levels of the tight junctions zonula occludens-1 (ZO-1), occludin and Junction Adhesion Molecule-A (JAM-A). Together with such a protein loss, particularly evident for ZO-1, a net perturbation of spatial localization of the three tight junctions was observed. Cell monolayer pre-treatment with the selective inhibitor of MMPs ARP100 or polyphenol (-)-epicathechin, previously shown to inhibit NADPH oxidase in the same model system, demonstrated that the decrease of the three tight junction proteins was mainly a consequence of MMPs induction, which was in turn dependent on the pro-oxidant property of the oxysterols investigated. Although further investigation on oxysterols intestinal layer damage mechanism is to be carried on, the consequent - but incomplete - prevention of oxysterols-dependent TJs alteration due to MMPs inhibition, avoided the loss of scaffold protein ZO-1, with possible significant recovery of intestinal monolayer integrity.

    Topics: Caco-2 Cells; Catechin; Cell Adhesion Molecules; Cholesterol; Cholesterol, Dietary; Electric Impedance; Enzyme Activation; Gene Expression Regulation; Humans; Hydroxycholesterols; Ketocholesterols; Lipid Peroxidation; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Occludin; Receptors, Cell Surface; Tight Junctions; Zonula Occludens-1 Protein

2017
The role of p38 MAPK in the induction of intestinal inflammation by dietary oxysterols: modulation by wine phenolics.
    Food & function, 2015, Volume: 6, Issue:4

    Dietary oxysterols are cholesterol auto-oxidation products widely present in cholesterol-rich foods. They are thought to affect the intestinal barrier function, playing a role in gut inflammation. This study has characterized specific cell signals that are up-regulated in differentiated CaCo-2 colonic epithelial cells by a mixture of oxysterols representative of a hyper-cholesterolemic diet. p38 MAPK activation plays a major role, while other signal branches, i.e. the JNK and ERK pathways, make minor contributions to the intestinal inflammation induced by dietary oxysterols. p38 transduction might be the missing link connecting the known NADPH oxidase activation, and the induction of NF-κB-dependent inflammatory events related to oxysterols' action in the intestine. A NOX1/p38 MAPK/NF-κB signaling axis was demonstrated by the quenched inflammation observed on blocking individual branches of this signal with specific chemical inhibitors. Furthermore, all these signaling sites were prevented when CaCo-2 cells were pre-incubated with phenolic compounds extracted from selected wines made of typical Sardinian grape varieties: red Cannonau and white Vermentino. Notably, Cannonau was more effective than Vermentino. The effect of Sardinian wine extracts on intestinal inflammation induced by dietary oxysterols might mainly be due to their phenolic content, more abundant in Cannonau than in Vermentino. Furthermore, among different phenolic components of both wines, epicatechin and caffeic acid exerted the strongest effects. These findings show a major role of the NOX1/p38 MAPK/NF-κB signaling axis in the activation of oxysterol-dependent intestinal inflammation, and confirm the concept that phenolics act as modulators at different sites of pro-oxidant and pro-inflammatory cell signals.

    Topics: Caco-2 Cells; Caffeic Acids; Cell Survival; Cholesterol; Epithelial Cells; Humans; Hydroxycholesterols; Inflammation; Interleukin-8; Intestinal Mucosa; Intestines; Ketocholesterols; NADPH Oxidase 1; NADPH Oxidases; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phenols; Reactive Oxygen Species; Signal Transduction; Up-Regulation; Vitis; Wine

2015
Reduced Condensing and Ordering Effects by 7-Ketocholesterol and 5β,6β-Epoxycholesterol on DPPC Monolayers.
    Langmuir : the ACS journal of surfaces and colloids, 2015, Sep-15, Volume: 31, Issue:36

    The exposure of organic-coated marine aerosols containing cholesterol (Chol) to radiation and/or an oxidizing atmosphere results in the formation of oxidized derivatives or oxysterols and will likely change aerosol surface properties. However, the intermolecular interactions between oxysterols and other lipid components and their influence on the surface properties of marine aerosols are not well-known. To address this question, the interfacial behavior and domain morphology of model Langmuir monolayers of two ring-substituted oxysterols, 7-ketocholesterol (7-KChol) and 5β,6β-epoxycholesterol (5,6β-EChol), mixed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were investigated by means of compression isotherms and Brewster angle microscopy (BAM) over a broad range of surface pressures and sterol molar ratios. Mixed DPPC/cholesterol (Chol) monolayers were also measured for comparison. The results of compression experiments showed that the condensing effect induced on mixed DPPC/sterol monolayers at low surface pressures and for intermediate molar ratios (0.3 ≤ X(sterol) ≤ 0.7) was weaker for oxysterols than for Chol. Additionally, mixed DPPC/oxysterol monolayers exhibited markedly smaller (∼2-3-fold) interfacial rigidity. Examination of the excess free energy of mixing further revealed that DPPC monolayers containing 7-KChol and Chol were thermodynamically more stable at high surface pressures than those with 5,6β-EChol, indicating that the strength of interactions between DPPC and 5,6β-EChol was the smallest. Finally, BAM images in the LE-LC phase of DPPC revealed that in comparison to Chol the addition of small amounts of oxysterols results in larger and less numerous domains, showing that oxysterols are not as effective in fluidizing the condensed phase of DPPC. Taken together, these results suggest that the strength of van der Waals interactions of DPPC alkyl chains with sterols follows the sterol hydrophobicity, with Chol being the most hydrophobic and oxysterols more hydrophilic due to their ketone and epoxy moieties. The difference in the condensing ability and stability of 7-KChol and 5,6β-EChol on DPPC likely originates from the distinct molecular structure and position of oxidation on the steroid nucleus. As suggested by recent MD simulations, depending on the oxidation position, ring-substituted oxysterols have a broader angular distribution of orientation than Chol in bilayers, which could be responsible for the observed reduction in co

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Cholesterol; Ketocholesterols; Microscopy, Atomic Force; Microscopy, Fluorescence; Surface Properties; Thermodynamics

2015
Fast LC-MS/MS analysis of free oxysterols derived from reactive oxygen species in human plasma and carotid plaque.
    Clinica chimica acta; international journal of clinical chemistry, 2013, Oct-21, Volume: 425

    A rapid liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the quantification of reactive oxygen species (ROS) derived free oxysterols and cholesterol in human plasma and atherosclerotic plaque.. In vitro autoxidation of cholesterol during sample pretreatment was avoided by applying only one protein precipitation and re-concentration step using 80 μl plasma. For preparation of 10mg atherosclerotic plaques an additional liquid-liquid extraction was included. Free 7-keto-, 7-α/ß-hydroxy-, 5,6-α-epoxy-, 5,6-β-epoxycholesterol, cholestane-3ß,5α,6ß-triol and cholesterol were separated within 7 min on a monolithic column. An API 4000 tandem mass spectrometer was applied in positive ionization mode using atmospheric pressure chemical ionization.. The detection limit was 0.1 ng/ml and the linearity ranged from 0.5 to 0.75 to 2000 ng/ml for the oxysterols and from 50 to 1000 μg/ml for cholesterol. Recovery was between 80.9 and 107.9%. Between-run imprecision ranged from 7.9 to 11.7%. Analysis of plasma samples from additional 50 middle-aged volunteers revealed a large inter-individual variability (e.g. 7-ketocholesterol 2.63-30.47 ng/ml). Oxysterol concentrations normalized to cholesterol were about 43 times higher in carotid plaque compared to plasma (n=5).. This rapid LC-MS/MS method enables reliable quantification focused on especially ROS-derived oxysterols in human plasma and atherosclerotic plaque samples under high-throughput conditions.

    Topics: Calibration; Carotid Arteries; Cholesterol; Chromatography, High Pressure Liquid; Chromatography, Liquid; Female; Humans; Hydroxycholesterols; Isomerism; Ketocholesterols; Limit of Detection; Liquid-Liquid Extraction; Male; Mass Spectrometry; Middle Aged; Plaque, Atherosclerotic; Reactive Oxygen Species; Reproducibility of Results; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry

2013
Proinflammatory effect of cholesterol and its oxidation products on CaCo-2 human enterocyte-like cells: effective protection by epigallocatechin-3-gallate.
    Free radical biology & medicine, 2010, Dec-15, Volume: 49, Issue:12

    Cholesterol and its oxidation products, namely oxysterols, have very recently been shown to potentially interfere with homeostasis of the human digestive tract, by promoting and sustaining irreversible damage of the colonic epithelial layer. This report concerns the strong proinflammatory action that a dietary oxysterol mixture and, to a lesser extent, an identical concentration of unoxidized cholesterol exert on CaCo-2 colonic epithelial cells by up-regulating both expression and synthesis of interleukin 8. The oxysterol mixture and its most effective component, 7β-hydroxycholesterol, are also shown to markedly enhance the expression of key inflammatory and chemotactic cytokines in colonic epithelial cells, more efficiently than unoxidized cholesterol. The sterols' proinflammatory effect seems to be mediated by enhanced activation of NOX1, because it is prevented by pretreatment of the cells with DPI, a selective inhibitor of this oxidase. Importantly, NOX1 hyperactivation by the oxysterol mixture or cholesterol was fully prevented by CaCo-2 cell preincubation with epigallocatechin-3-gallate. Consistently, supplementation with this compound fully protected colonic epithelial cells against overexpression of inflammatory and chemotactic genes induced by the sterols investigated.

    Topics: Antioxidants; Apoptosis; Caco-2 Cells; Catechin; Cholesterol; Enterocytes; Enzyme Activation; Humans; Hydroxycholesterols; Inflammation Mediators; Interleukin-8; Ketocholesterols; NADPH Oxidases; Onium Compounds; Up-Regulation

2010
Major differences in oxysterol formation in human low density lipoproteins (LDLs) oxidized by *OH/O2*- free radicals or by copper.
    FEBS letters, 1999, May-21, Volume: 451, Issue:2

    The aim of our study was to determine the oxysterol formation in low density lipoproteins (LDLs) oxidized by defined oxygen free radicals (*OH/O2*-). This was compared to the oxysterol produced upon the classical copper oxidation procedure. The results showed a markedly lower formation of oxysterols induced by *OH/O2*- free radicals than by copper and thus suggested a poor ability of these radicals to initiate cholesterol oxidation in LDLs. Moreover, the molecular species of cholesteryl ester hydroperoxides produced by LDL copper oxidation seemed more labile than those formed upon *OH/O2*(-)-induced oxidation, probably due to their degradation by reaction with copper ions.

    Topics: Cholesterol; Copper; Dose-Response Relationship, Radiation; Fatty Acids, Unsaturated; Free Radicals; Gamma Rays; Humans; Hydrogen Peroxide; Hydroxycholesterols; Ketocholesterols; Kinetics; Lipoproteins, LDL; Thiobarbituric Acid Reactive Substances; Time Factors

1999