5-6-epoxy-8-11-14-eicosatrienoic-acid and iberiotoxin

5-6-epoxy-8-11-14-eicosatrienoic-acid has been researched along with iberiotoxin* in 6 studies

Other Studies

6 other study(ies) available for 5-6-epoxy-8-11-14-eicosatrienoic-acid and iberiotoxin

ArticleYear
Rat mesenteric arterial dilator response to 11,12-epoxyeicosatrienoic acid is mediated by activating heme oxygenase.
    American journal of physiology. Heart and circulatory physiology, 2006, Volume: 291, Issue:4

    11,12-Epoxyeicosatrienoic acid (11,12-EET), a potent vasodilator produced by the endothelium, acts on calcium-activated potassium channels and shares biological activities with the heme oxygenase/carbon monoxide (HO/CO) system. We examined whether activation of HO mediates the dilator action of 11,12-EET, and that of the other EETs, on rat mesenteric arteries. Dose-response curves (10(-9) to 10(-6) M) to 5,6-EET, 8,9-EET, 11,12-EET, 14,15-EET, and ACh (10(-9) to 10(-4) M) were evaluated in preconstricted (10(-6) mol/l phenylephrine) mesenteric arteries (<350 microm diameter) in the presence or absence of 1) the cyclooxygenase inhibitor indomethacin (2.8 microM), 2) the HO inhibitor chromium mesoporphyrin (CrMP) (15 microM), 3) the soluble guanylyl cyclase (GC) inhibitor ODQ (10 microM), and 4) the calcium-activated potassium channel inhibitor iberiotoxin (25 nM). The vasodilator response to 11,12-EET was abolished by CrMP and iberiotoxin, whereas indomethacin and ODQ had no effect. In contrast, the effect of ACh was attenuated by ODQ but not by CrMP. The vasodilator effect of 8,9-EET, like that of 11,12-EET, was greatly attenuated by HO inhibition. In contrast, the mesenteric vasodilator response to 5,6-EET was independent of both HO and GC, whereas that to 14,15-EET demonstrated two components, an HO and a GC, of equal magnitude. Incubation of mesenteric microvessels with 11,12-EET caused a 30% increase in CO release, an effect abolished by inhibition of HO. We conclude that the rat mesenteric vasodilator action of 11,12-EET is mediated via an increase in HO activity and an activation of calcium-activated potassium channels.

    Topics: 8,11,14-Eicosatrienoic Acid; Acetylcholine; Animals; Carbon Monoxide; Dose-Response Relationship, Drug; Heme Oxygenase (Decyclizing); Male; Mesenteric Arteries; Mesoporphyrins; Organometallic Compounds; Oxadiazoles; Peptides; Potassium Channels, Calcium-Activated; Quinoxalines; Rats; Rats, Wistar; Vasodilation; Vasodilator Agents

2006
Stable 5,6-epoxyeicosatrienoic acid analog relaxes coronary arteries through potassium channel activation.
    Hypertension (Dallas, Tex. : 1979), 2005, Volume: 45, Issue:4

    5,6-epoxyeicosatrienoic acid (5,6-EET) is a cytochrome P450 epoxygenase metabolite of arachidonic acid that causes vasorelaxation. However, investigations of its role in biological systems have been limited by its chemical instability. We developed a stable agonist of 5,6-EET, 5-(pentadeca-3(Z),6(Z),9(Z)-trienyloxy)pentanoic acid (PTPA), in which the 5,6-epoxide was replaced with a 5-ether. PTPA obviates chemical and enzymatic hydrolysis. In bovine coronary artery rings precontracted with U46619, PTPA (1 nmol/L to 10 micromol/L) induced concentration-dependent relaxations, with maximal relaxation of 86+/-5% and EC50 of 1 micromol/L. The relaxations were inhibited by the cyclooxygenase inhibitor indomethacin (10 micromol/L; max relaxation 43+/-9%); the ATP-sensitive K+ channel inhibitor glybenclamide (10 micromol/L; max relaxation 49+/-6%); and the large conductance calcium-activated K+ channel inhibitor iberiotoxin (100 nmol/L; max relaxation 38+/-6%) and abolished by the combination of iberiotoxin with indomethacin or glybenclamide or increasing extracellular K+ to 20 mmol/L. Whole-cell outward K+ current was increased nearly 6-fold by PTPA (10 micromol/L), which was also blocked by iberiotoxin. Additionally, we synthesized 5-(pentadeca-6(Z),9(Z)-dienyloxy)pentanoic acid and 5-(pentadeca-3(Z),9(Z)-dienyloxy)pentanoic acid (PDPA), PTPA analogs that lack the 8,9 or 11,12 double bonds of arachidonic acid and therefore are not substrates for cyclooxygenase. The PDPAs caused concentration-dependent relaxations (max relaxations 46+/-13% and 52+/-7%, respectively; EC50 1micromol/L), which were not altered by glybenclamide but blocked by iberiotoxin. These studies suggested that PTPA induces relaxation through 2 mechanisms: (1) cyclooxygenase-dependent metabolism to 5-ether-containing prostaglandins that activate ATP-sensitive K+ channels and (2) activation of smooth muscle large conductance calcium-activated K+ channels. PDPAs only activate large conductance calcium-activated K+ channels.

    Topics: 8,11,14-Eicosatrienoic Acid; Adenosine Triphosphate; Animals; Cattle; Coronary Vessels; Drug Stability; Electric Conductivity; Glyburide; In Vitro Techniques; Indomethacin; Patch-Clamp Techniques; Pentanoic Acids; Peptides; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Calcium-Activated; Prostaglandin-Endoperoxide Synthases; Vasodilation

2005
Membrane-potential-dependent inhibition of platelet adhesion to endothelial cells by epoxyeicosatrienoic acids.
    Arteriosclerosis, thrombosis, and vascular biology, 2004, Volume: 24, Issue:3

    Epoxyeicosatrienoic acids (EETs) are potent vasodilators produced by endothelial cells. In many vessels, they are an endothelium-derived hyperpolarizing factor (EDHF). However, it is unknown whether they act as an EDHF on platelets and whether this has functional consequences.. Flow cytometric measurement of platelet membrane potential using the fluorescent dye DiBac4 showed a resting potential of -58+/-9 mV. Different EET regioisomers hyperpolarized platelets down to -69+/-2 mV, which was prevented by the non-specific potassium channel inhibitor charybdotoxin and by use of a blocker of calcium-activated potassium channels of large conductance (BK(Ca) channels), iberiotoxin. EETs inhibited platelet adhesion to endothelial cells under static and flow conditions. Exposure to EETs inhibited platelet P-selectin expression in response to ADP. Stable overexpression of cytochrome P450 2C9 in EA.hy926 cells (EA.hy2C9 cells) resulted in release of EETs and a factor that hyperpolarized platelets and inhibited their adhesion to endothelial cells. These effects were again inhibited by charybdotoxin and iberiotoxin.. EETs hyperpolarize platelets and inactivate them by inhibiting adhesion molecule expression and platelet adhesion to cultured endothelial cells in a membrane potential-dependent manner. They act as an EDHF on platelets and might be important mediators of the anti-adhesive properties of vascular endothelium.

    Topics: 8,11,14-Eicosatrienoic Acid; Apamin; Aryl Hydrocarbon Hydroxylases; Biological Factors; Blood Platelets; Cells, Cultured; Charybdotoxin; Cytochrome P-450 CYP2C9; Endothelial Cells; Endothelium, Vascular; Humans; Hydroxyeicosatetraenoic Acids; Ion Channels; Membrane Potentials; Peptides; Platelet Adhesiveness; Platelet Aggregation; Potassium Channels; Recombinant Fusion Proteins; Transfection; Umbilical Veins

2004
EETs relax airway smooth muscle via an EpDHF effect: BK(Ca) channel activation and hyperpolarization.
    American journal of physiology. Lung cellular and molecular physiology, 2001, Volume: 280, Issue:5

    Epoxyeicosatrienoic acids (EETs) are produced from arachidonic acid via the cytochrome P-450 epoxygenase pathway. EETs are able to modulate smooth muscle tone by increasing K(+) conductance, hence generating hyperpolarization of the tissues. However, the molecular mechanisms by which EETs induce smooth muscle relaxation are not fully understood. In the present study, the effects of EETs on airway smooth muscle (ASM) were investigated using three electrophysiological techniques. 8,9-EET and 14,15-EET induced concentration-dependent relaxations of the ASM precontracted with a muscarinc agonist (carbamylcholine chloride), and these relaxations were partly inhibited by 10 nM iberiotoxin (IbTX), a specific large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel blocker. Moreover, 3 microM 8,9- or 14,15-EET induced hyperpolarizations of -12 +/- 3.5 and -16 +/- 3 mV, with EC(50) values of 0.13 and 0.14 microM, respectively, which were either reversed or blocked on addition of 10 nM IbTX. These results indicate that BK(Ca) channels are involved in hyperpolarization and participate in the relaxation of ASM. In addition, complementary experiments demonstrated that 8,9- and 14,15-EET activate reconstituted BK(Ca) channels at low free Ca(2+) concentrations without affecting their unitary conductance. These increases in channel activity were IbTX sensitive and correlated well with the IbTX-sensitive hyperpolarization and relaxation of ASM. Together these results support the view that, in ASM, the EETs act through an epithelium-derived hyperpolarizing factorlike effect.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Biological Factors; Bronchoconstriction; Cattle; Cyclooxygenase Inhibitors; Dose-Response Relationship, Drug; Enzyme Inhibitors; Guinea Pigs; In Vitro Techniques; Large-Conductance Calcium-Activated Potassium Channels; Male; Membrane Potentials; Muscarinic Agonists; Muscle, Smooth; Nitric Oxide Synthase; Peptides; Potassium Channels; Potassium Channels, Calcium-Activated; Rabbits; Trachea

2001
Direct modulation of tracheal Cl--channel activity by 5,6- and 11,12-EET.
    The American journal of physiology, 1998, Volume: 275, Issue:3

    Using microelectrode potential measurements, we tested the involvement of Cl- conductances in the hyperpolarization induced by 5,6- and 11,12-epoxyeicosatrienoic acid (EET) in airway smooth muscle (ASM) cells. 5,6-EET and 11,12-EET (0.75 microM) caused -5.4 +/- 1.1- and -3.34 +/- 0.95-mV hyperpolarizations, respectively, of rabbit tracheal cells (from a resting membrane potential of -53.25 +/- 0.44 mV), with significant residual repolarizations remaining after the Ca2+-activated K+ channels had been blocked by 10 nM iberiotoxin. In bilayer reconstitution experiments, we demonstrated that the EETs directly inhibit a Ca2+-insensitive Cl- channel from bovine ASM; 1 microM 5,6-EET and 1.5 microM 11,12-EET lowered the unitary current amplitude by 40 (n = 6 experiments) and 44.7% (n = 4 experiments), respectively. Concentration-dependent decreases in channel open probability were observed, with estimated IC50 values of 0.26 microM for 5,6- and 1.15 microM for 11,12-EET. Furthermore, pharmacomechanical tension measurements showed that both regioisomers induced significant bronchorelaxations in epithelium-denuded ASM strips. These results suggest that 5,6- and 11,12-EET can act in ASM as epithelium-derived hyperpolarizing factors.

    Topics: 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; 8,11,14-Eicosatrienoic Acid; Animals; Carbachol; Cattle; Cesium; Chloride Channels; Chlorides; Epithelial Cells; In Vitro Techniques; Membrane Potentials; Microelectrodes; Microsomes; Muscle, Smooth; Peptides; Rabbits; Trachea

1998
Epoxyeicosatrienoic acids relax airway smooth muscles and directly activate reconstituted KCa channels.
    The American journal of physiology, 1998, Volume: 275, Issue:3

    Epoxyeicosatrienoic acids (EETs) relax various smooth muscles by increasing outward K+ movement, but the molecular mode of action of EET regioisomers remains to be clarified. The effects of EETs were investigated on bovine airway smooth muscle tone and on reconstituted Ca2+-activated K+ (KCa) channels. 5,6-EET and 11, 12-EET induced dose-dependent relaxations of precontracted bronchial spirals. These effects were partly abolished by 10 nM iberiotoxin. Bilayer experiments have shown that 0.1-10 microM 11,12-EET produced up to fourfold increases in the open probability of KCa channels from the cis (extracellular) side by enhancing the mean open time constant and reducing the long closed time constant, without affecting the unitary conductance. EET-induced activations were blocked by 10 nM iberiotoxin. Addition of vehicles or other lipids as well as of GTP and guanosine 5'-O-(3-thiotriphosphate) in the absence of EET had no effect on channel activity. Thus EETs directly activate KCa channels from airway smooth muscle through an interaction with the extracellular face of the channel. We propose that EETs could represent candidate molecules as epithelium-derived hyperpolarizing factors.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Bronchi; Carbachol; Cattle; Guinea Pigs; Histamine; In Vitro Techniques; Ion Channel Gating; Male; Membrane Potentials; Microsomes; Muscle Relaxation; Muscle, Smooth; Peptides; Potassium Channels; Potassium Chloride; Sarcolemma; Tetraethylammonium; Trachea

1998