5-6-epoxy-8-11-14-eicosatrienoic-acid and 17-octadecynoic-acid

5-6-epoxy-8-11-14-eicosatrienoic-acid has been researched along with 17-octadecynoic-acid* in 2 studies

Other Studies

2 other study(ies) available for 5-6-epoxy-8-11-14-eicosatrienoic-acid and 17-octadecynoic-acid

ArticleYear
Involvement of cytochrome P-450 enzyme activity in the control of microvascular permeability in canine lung.
    The American journal of physiology, 1998, Volume: 275, Issue:4 Pt 1

    Products of cytochrome P-450 enzymes may play a role in capacitative Ca2+ entry in endothelial cells, which can promote a rise in vascular permeability. Thapsigargin (150 nM) stimulated capacitative Ca2+ entry and increased the capillary filtration coefficient (Kf,c) in isolated normal canine lung lobes. Pretreatment of the lobes with cytochrome P-450 inhibitors clotrimazole (10 microM) or 17-octadecynoic acid (5 microM) abolished the thapsigargin-induced increases in Kf,c. Because clotrimazole also blocks Ca2+-activated K+ channels, the K+-channel blocker tetraethylammonium (10 mM) was used to ensure that permeability was not influenced by this mechanism. Tetraethylammonium did not affect thapsigargin-induced permeability. The effects of the cytochrome P-450 arachidonic acid metabolite 5,6-epoxyeicosatrienoic acid (EET) were also investigated in lobes taken from control dogs and dogs with pacing-induced heart failure (paced at 245 beats/min for 4 wk). 5,6-EET (10 microM) significantly increased Kf,c in lobes from the control but not from the paced animals. We conclude that cytochrome P-450 metabolites are involved in mediating microvascular permeability in normal canine lungs, but an absence of 5,6-EET after heart failure does not explain the resistance of lungs from these animals to permeability changes.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Capillary Permeability; Clotrimazole; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Dogs; Endothelium, Vascular; Fatty Acids, Unsaturated; In Vitro Techniques; Lung; Microcirculation; Potassium Channels; Pulmonary Circulation; Tetraethylammonium; Thapsigargin

1998
P450 arachidonate metabolites mediate bradykinin-dependent inhibition of NaCl transport in the rat thick ascending limb.
    Canadian journal of physiology and pharmacology, 1997, Volume: 75, Issue:2

    Recent studies from this laboratory demonstrated that bradykinin transiently elevates intracellular Ca2+ and inhibits Cl-reabsorption in the in vitro microperfused medullary thick ascending limb (mTAL) of the rat. The present study was designed to identify the intracellular signaling mechanism(s) that mediate this response. Preincubation with the intracellular calcium chelator BAPTA (10(-5) M) completely eliminated the bradykinin-dependent increase in intracellular Ca2+ and the suppression of Cl- transport. Preincubation with the cGMP-dependent protein kinase inhibitor H-89 (10(-5) M) had no effect on the transport response to bradykinin. In contrast, 17-octadecynoic acid (17-ODYA; 10(-5) M), a suicide-substrate inhibitor of renal cytochrome P450 omega-hydroxylase, completely blocked the transport response to bradykinin, while the cyclooxygenase inhibitor sodium meclofenamate (10(-5) M) had no effect. Finally, addition of the cytochrome P450 omega-hydroxylase metabolite 20-hydroxyeicosatetraenoic acid (20-HETE; 10(-8) M) to the bathing medium significantly inhibited Cl- transport in the mTAL (delta -39 +/- 6.0%; p < 0.05), while the epoxygenase metabolite 5,6-epoxyeicosatrienoic acid (5,6-EET; 10(-8) M) had no effect. These data suggest that the bradykinin-dependent inhibition of Cl- transport in the mTAL of the rat is mediated by cytochrome P450 dependent metabolite(s) of arachidonic acid.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Bradykinin; Calcium; Cyclic GMP; Cyclooxygenase Inhibitors; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Enzyme Inhibitors; Fatty Acids, Unsaturated; Hydroxyeicosatetraenoic Acids; In Vitro Techniques; Kidney Tubules, Distal; Male; Rats; Rats, Sprague-Dawley; Sodium Chloride

1997