5-6-dehydrokawain and yangonin

5-6-dehydrokawain has been researched along with yangonin* in 6 studies

Other Studies

6 other study(ies) available for 5-6-dehydrokawain and yangonin

ArticleYear
Selected α-pyrones from the plants Cryptocarya novoguineensis (Lauraceae) and Piper methysticum (Piperaceae) with activity against Haemonchus contortus in vitro.
    International journal for parasitology. Drugs and drug resistance, 2019, Volume: 9

    Due to the widespread occurrence and spread of anthelmintic resistance, there is a need to develop new drugs against resistant parasitic nematodes of livestock animals. The Nobel Prize-winning discovery and development of the anti-parasitic drugs avermectin and artemisinin has renewed the interest in exploring natural products as anthelmintics. In the present study, we screened 7500 plant extracts for in vitro-activity against the barber's pole worm, Haemonchus contortus, a highly significant pathogen of ruminants. The anthelmintic extracts from two plants, Cryptocarya novoguineensis and Piper methysticum, were fractionated by high-performance liquid chromatography (HPLC). Subsequently, compounds were purified from fractions with significant biological activity. Four α-pyrones, namely goniothalamin (GNT), dihydrokavain (DHK), desmethoxyyangonin (DMY) and yangonin (YGN), were purified from fractions from the two plants, GNT from C. novoguineensis, and DHK, DMY and YGN (= kavalactones) from P. methysticum. The three kavalactones induced a lethal, eviscerated (Evi) phenotype in treated exsheathed third-stage larvae (xL3s), and DMY and YGN had moderate potencies (IC

    Topics: Animals; Anthelmintics; Chromatography, High Pressure Liquid; Cryptocarya; Haemonchus; High-Throughput Screening Assays; Inhibitory Concentration 50; Larva; Parasitic Sensitivity Tests; Phytochemicals; Piperaceae; Plant Extracts; Pyrones

2019
Single-Lab Validation for Determination of Kavalactones and Flavokavains in Piper methysticum (Kava).
    Planta medica, 2018, Volume: 84, Issue:16

    Topics: Calibration; Chromatography, High Pressure Liquid; Dietary Supplements; Kava; Lactones; Limit of Detection; Plant Roots; Pyrans; Pyrones

2018
Permeability studies of Kavalactones using a Caco-2 cell monolayer model.
    Journal of clinical pharmacy and therapeutics, 2007, Volume: 32, Issue:3

    To examine the bioavailability of kavalactones in vitro and the possible differences in their bioavailability because of variations in either chemical structure or the method of extraction used.. Caco-2 cell monolayers were used to determine the potential bioavailability of kavalactones. Kavalactones were added to the apical layer and basolateral samples were taken over 150 min to examine the concentration diffusing across the cell monolayer. Kavalactone concentrations in these samples were determined by high pressure liquid chromatography.. Kavalactones were found to be potentially bioavailable as they all readily crossed the Caco-2 monolayers with apparent permeabilities (P(app)) increasing from 42 x 10(-6) cm/s and most exhibiting more than 70% crossing within 90 min. Not all differences in their bioavailability can be related to kavalactone structural differences as it appears that bioavailability may also be affected by co-extracted compounds. For example, the P(app) for kawain from ethanol extracts was higher than the values obtained for the same compound from water extracts or for the kavalactone alone.. While the extraction method used (ethanol or water) influences the total (but not the relative) concentrations of kavalactones, it does not markedly affect their bioavailability. Hence, any differences between an ethanolic or an aqueous extract in terms of the propensity of kava to cause liver damage is not because of differing kavalactone bioavailabilities.

    Topics: Biological Availability; Biological Transport; Caco-2 Cells; Cell Membrane Permeability; Chromatography, High Pressure Liquid; Humans; Kava; Kinetics; Lactones; Models, Biological; Molecular Structure; Plant Extracts; Pyrans; Pyrones; Rhizome

2007
Kavalactones fail to inhibit alcohol dehydrogenase in vitro.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2006, Volume: 13, Issue:3

    In recent years, Kava kava (Piper methysticum, Forst. f., Piperaceae), a folkloric beverage and popular herbal remedy, has been implicated in a number of liver failure cases. Many hypotheses as to the mechanism of its hepatotoxicity, for example interactions with other co-ingested medication, have been postulated. This present study investigated whether pharmacokinetic interactions between kava constituents and alcohol via alcohol dehydrogenase (ADH) inhibition by individual kavalactones might explain its claimed hepatotoxic effects. Four kavalactones, (+/-)-kavain, methysticin, yangonin and desmethoxyyangonin, fail to inhibit ADH in vitro at 1, 10 or 100 microM concentrations.

    Topics: Alcohol Dehydrogenase; Alcohol Drinking; Chemical and Drug Induced Liver Injury; Herb-Drug Interactions; Kava; Lactones; Plant Extracts; Pyrans; Pyrazoles; Pyrones; Spectrophotometry

2006
In vitro toxicity of kava alkaloid, pipermethystine, in HepG2 cells compared to kavalactones.
    Toxicological sciences : an official journal of the Society of Toxicology, 2004, Volume: 79, Issue:1

    Kava herbal supplements have been recently associated with acute hepatotoxicity, leading to the ban of kava products in approximately a dozen countries around the world. It is suspected that some alkaloids from aerial kava may have contributed to the problem. Traditionally, Pacific Islanders use primarily the underground parts of the shrub to prepare the kava beverage. However, some kava herbal supplements may contain ingredients from aerial stem peelings. The aim of this study was to test the in vitro effects of a major kava alkaloid, pipermethystine (PM), found mostly in leaves and stem peelings, and kavalactones such as 7,8-dihydromethysticin (DHM) and desmethoxyyangonin (DMY), which are abundant in the roots. Exposure of human hepatoma cells, HepG2, to 100 microM PM caused 90% loss in cell viability within 24 h, while 50 microM caused 65% cell death. Similar concentrations of kavalactones did not affect cell viability for up to 8 days of treatment. Mechanistic studies indicate that, in contrast to kavalactones, PM significantly decreased cellular ATP levels, mitochondrial membrane potential, and induced apoptosis as measured by the release of caspase-3 after 24 h of treatment. These observations suggest that PM, rather than kavalactones, is capable of causing cell death, probably in part by disrupting mitochondrial function. Thus, PM may contribute to rare but severe hepatotoxic reactions to kava.

    Topics: Alkaloids; Animals; Apoptosis; Caspases; Cell Line, Tumor; Dietary Supplements; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Humans; Kava; Lactones; Plant Extracts; Plant Leaves; Plant Stems; Pyridones; Pyrones; Time Factors

2004
Contribution to the quantitative and enantioselective determination of kavapyrones by high-performance liquid chromatography on ChiraSpher NT material.
    Journal of chromatography. B, Biomedical sciences and applications, 1997, Nov-21, Volume: 702, Issue:1-2

    A simultaneous HPLC separation of the enantiomers of kavain, dihydrokavain, methysticin and dihydromethysticin, as well as the achiral dienolides yangonin and desmethoxyyangonin was carried out on a ChiraSpher NT column. For quantitative determinations, calibration curves with correlation coefficients between 0.9982 and 0.9996 were established for the genuine kavapyrones. Detection limits between 0.25 microg and 0.5 microg per injection were measured at 240 nm. The defined scopes of work corresponded with the different kavapyrone amounts, depending on growth factors of distinct plant locations. The precision of the method was verified by analysing a phytopharmacon with a nominal value of 40 mg kavapyrones per tablet. The evaluation revealed 39.62 mg per tablet by the sum of single calculated kavapyrones. Relative standard deviations between 1.06% and 2.39% were found for the compounds under investigation. The accuracy of the method was proved by a recovery of 99.7%. To simplify the determination of the total kavapyrone amount, response factors and correlation factors for (+)-dihydrokavain, (+)-methysticin, (+)-dihydromethysticin, yangonin and desmethoxyyangonin were calculated relative to (+)-kavain.

    Topics: Anti-Anxiety Agents; Chromatography, High Pressure Liquid; Pyrans; Pyrones; Reproducibility of Results; Sensitivity and Specificity; Stereoisomerism

1997