5-6-7-8-tetrahydromethanopterin has been researched along with 5-6-7-8-tetrahydrofolic-acid* in 3 studies
3 other study(ies) available for 5-6-7-8-tetrahydromethanopterin and 5-6-7-8-tetrahydrofolic-acid
Article | Year |
---|---|
Comparative genomics guided discovery of two missing archaeal enzyme families involved in the biosynthesis of the pterin moiety of tetrahydromethanopterin and tetrahydrofolate.
C-1 carriers are essential cofactors in all domains of life, and in Archaea, these can be derivatives of tetrahydromethanopterin (H(4)-MPT) or tetrahydrofolate (H(4)-folate). Their synthesis requires 6-hydroxymethyl-7,8-dihydropterin diphosphate (6-HMDP) as the precursor, but the nature of pathways that lead to its formation were unknown until the recent discovery of the GTP cyclohydrolase IB/MptA family that catalyzes the first step, the conversion of GTP to dihydroneopterin 2',3'-cyclic phosphate or 7,8-dihydroneopterin triphosphate [El Yacoubi, B.; et al. (2006) J. Biol. Chem., 281, 37586-37593 and Grochowski, L. L.; et al. (2007) Biochemistry46, 6658-6667]. Using a combination of comparative genomics analyses, heterologous complementation tests, and in vitro assays, we show that the archaeal protein families COG2098 and COG1634 specify two of the missing 6-HMDP synthesis enzymes. Members of the COG2098 family catalyze the formation of 6-hydroxymethyl-7,8-dihydropterin from 7,8-dihydroneopterin, while members of the COG1634 family catalyze the formation of 6-HMDP from 6-hydroxymethyl-7,8-dihydropterin. The discovery of these missing genes solves a long-standing mystery and provides novel examples of convergent evolutions where proteins of dissimilar architectures perform the same biochemical function. Topics: Archaea; Archaeal Proteins; Genes, Archaeal; Genomics; Models, Molecular; Neopterin; Phylogeny; Pterins; Tetrahydrofolates | 2012 |
Dichloromethane metabolism and C1 utilization genes in Methylobacterium strains.
The ability of methylotrophic alpha-proteobacteria to grow with dichloromethane (DCM) as source of carbon and energy has long been thought to depend solely on a single cytoplasmic enzyme, DCM dehalogenase, which converts DCM to formaldehyde, a central intermediate of methylotrophic growth. The gene dcmA encoding DCM dehalogenase of Methylobacterium dichloromethanicum DM4 was expressed from a plasmid in closely related Methylobacterium strains lacking this enzyme. The ability to grow with DCM could be conferred upon Methylobacterium chloromethanicum CM4, a chloromethane degrader, but not upon Methylobacterium extorquens AM1. In addition, growth of strain AM1 with methanol was impaired in the presence of DCM. The possibility that single-carbon (C1) utilization pathways in dehalogenating Methylobacterium strains differed from those discovered in strain AM1 was addressed. Homologues of tetrahydrofolate-linked and tetrahydromethanopterin-linked C1 utilization genes of strain AM1 were detected in both strain DM4 and strain CM4, and cloning and sequencing of several of these genes from strain DM4 revealed very high sequence identity (96.5-99.7%) to the corresponding genes of strain AM1. The expression of transcriptional xylE fusions of selected genes of the tetrahydrofolate- and tetrahydromethanopterin-linked pathways from strain DM4 was investigated. The data obtained suggest that the expression levels of some C1 utilization genes in M. dichloromethanicum DM4 grown with DCM may differ from those observed during growth with methanol. Topics: Carbon; Formaldehyde; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Enzymologic; Genes, Bacterial; Lyases; Methanol; Methylene Chloride; Methylobacterium; Molecular Sequence Data; Multigene Family; Pterins; Tetrahydrofolates | 2002 |
Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol.
Formaldehyde is toxic for all organisms from bacteria to humans due to its reactivity with biological macromolecules. Organisms that grow aerobically on single-carbon compounds such as methanol and methane face a special challenge in this regard because formaldehyde is a central metabolic intermediate during methylotrophic growth. In the alpha-proteobacterium Methylobacterium extorquens AM1, we found a previously unknown enzyme that efficiently catalyzes the removal of formaldehyde: it catalyzes the condensation of formaldehyde and tetrahydromethanopterin to methylene tetrahydromethanopterin, a reaction which also proceeds spontaneously, but at a lower rate than that of the enzyme-catalyzed reaction. Formaldehyde-activating enzyme (Fae) was purified from M. extorquens AM1 and found to be one of the major proteins in the cytoplasm. The encoding gene is located within a cluster of genes for enzymes involved in the further oxidation of methylene tetrahydromethanopterin to CO(2). Mutants of M. extorquens AM1 defective in Fae were able to grow on succinate but not on methanol and were much more sensitive toward methanol and formaldehyde. Uncharacterized orthologs to this enzyme are predicted to be encoded by uncharacterized genes from archaea, indicating that this type of enzyme occurs outside the methylotrophic bacteria. Topics: Amino Acid Sequence; Bacterial Proteins; Carbon-Nitrogen Ligases; Catalysis; Chromosome Mapping; Culture Media; Enzyme Activation; Formaldehyde; Genes, Archaeal; Methanol; Methylobacterium extorquens; Molecular Sequence Data; Molecular Weight; Mutagenesis; Phenotype; Pterins; Sequence Homology, Amino Acid; Tetrahydrofolates | 2000 |