5--ethylamino-9-diethylaminobenzo(a)phenoselenazinium has been researched along with 5-ethylamino-9-diethylaminobenzo(a)phenothiazinium* in 3 studies
3 other study(ies) available for 5--ethylamino-9-diethylaminobenzo(a)phenoselenazinium and 5-ethylamino-9-diethylaminobenzo(a)phenothiazinium
Article | Year |
---|---|
Real-time fluorescence monitoring of phenothiazinium photosensitizers and their anti-mycobacterial photodynamic activity against Mycobacterium bovis BCG in in vitro and in vivo models of localized infection.
An objective was to explore the photodynamic activity of two cationic photosensitizers (PS) (benzo[a]phenothiazinium chloride and benzo[a]phenoselenazinium chloride) against Mycobacterium bovis BCG both in vitro and in a murine model of BCG-granuloma. The hypothesis being tested in this study was that cationic molecules could best interact with the negatively charged membrane of BCG as a model for mycobacterial infection. Cells in culture were incubated with various concentrations of PS and subsequently illuminated using a 635 nm diode laser. Dark- and light-induced killing profiles were generated as a function of fluence and dye concentration. In vivo, local injection of the PS into subcutaneous Mycobacterium-induced granuloma sites in murine model was followed by red light illumination of the same area. A special microscope was fabricated for real-time in vivo fluorescent microscopy to monitor EtNBS delivery to subcutaneous murine granulomata. Both PS demonstrated good in vitro antimycobacterial photodynamic activity with varying degrees of toxicity under dark conditions. Real time in vivo monitoring of benzophenothiazine chloride in the mouse model indicated that this fluorescent photosensitizer was delivered rapidly to the subcutaneous granuloma site. In vivo, photosensitizer specific dark- and photo-toxicities depended on the structure, concentration of the photosensitizer and the light dose utilized. Cationic phenothiazine photosensitizers are promising candidates for use in anti-mycobacterial PDT for localized diseases such as cutaneous and pulmonary granulomata. Topics: Animals; Disease Models, Animal; Fluorescence; Granuloma; Mice; Mice, Inbred BALB C; Microscopy, Fluorescence; Mycobacterium bovis; Organoselenium Compounds; Photochemotherapy; Photosensitizing Agents; Thiazines; Tuberculosis | 2007 |
Effects of the subcellular redistribution of two nile blue derivatives on photodynamic oxygen consumption.
We present experimental evidence that demonstrates directly how the subcellular localization and redistribution of two nile blue derivatives, 5-ethylamino-9-diethyl-aminobenzo[a]phenothiazinium chloride (EtNBS) and 5-ethylamino-9-diethyl-aminobenzo[a]phenoselenazinium chloride (EtNBSe), affect oxygen consumption during irradiation of sensitized multicell EMT6 spheroids. Specifically, two well-defined phases of oxygen consumption are observed during treatment, with the onset of the second phase being a fluence-dependent event. Fluorescence microscopy during irradiation of EtNBS-sensitized EMT6 monolayer cultures indicates that sensitizer redistribution from intracellular organelles, presumably lysosomes, to the cytosol can explain the onset of the second oxygen consumption phase. This event requires eight times fewer photons for EtNBSe than for EtNBS, consistent with the higher singlet oxygen yield of the former dye. The existence of a second oxygen consumption phase suggests that the aggregated form of the dye is a less efficient photodynamic agent. Moreover, we present evidence suggesting that damage to the primary sites of localization might be less significant than damage incurred by the sites to which the sensitizer redistributes during irradiation. Topics: Animals; Mice; Microscopy, Fluorescence; Organoselenium Compounds; Oxazines; Oxygen Consumption; Photobiology; Photochemotherapy; Photosensitizing Agents; Spheroids, Cellular; Subcellular Fractions; Thiazines; Tumor Cells, Cultured | 1998 |
Phototoxicity, redox behavior, and pharmacokinetics of benzophenoxazine analogues in EMT-6 murine sarcoma cells.
Structural modifications to the photoinactive benzophenoxazine Nile blue A have led to three novel derivatives which include 5-ethylamino-9-diethylaminobenzo[a]phenoxazinium (EtNBA), 5-ethylamino-9-diethylaminobenzo[a]phenothiazinium (EtNBS), and 5-ethylamino-9-diethylaminobenzo[a]phenoselenazinium (EtNBSe) chlorides. The incorporation of sulfur and selenium into the benzophenoxazine moiety results in lipophilic, red-absorbing (650-660 nm) chromophores which possess significantly increased singlet oxygen yields (0.025 and 0.65, respectively, compared to 0.005 for EtNBA). This study examines the photosensitizing efficacies and pharmacokinetics in vitro in the EMT-6 murine mammary sarcoma cell line as well as the physicochemical, photochemical, and redox properties of these new analogues. Comparisons with Photofrin II, the only photosensitizer available clinically, were made in an attempt to high-light their different pharmacological characteristics. The photodynamic activity of the benzophenoxazine dyes correlates with their ability to generate the phototoxin singlet oxygen and increases in the following order: EtNBA < EtNBS << EtNBSe. At an extracellular dye concentration of 0.5 microM, the light dose required to kill approximately 50% of the cells was 2.0 and < 0.5 J/cm2 for the sulfur and selenium dyes, respectively. The light dose required to kill approximately 50% of the cells for both EtNBA and Photofrin II could not be determined because of their weak phototoxic effect under these conditions. At a light dose of 3.3 J/cm2, EtNBSe is approximately 1000 times more phototoxic than Photofrin II. All three benzophenoxazine derivatives are characterized by a similar uptake/efflux pattern in vitro consisting of a rapid and extensive cellular accumulation followed by a slow efflux rate. Contrary to their rapid uptake, 50% of the accumulated EtNBS and EtNBSe is retained intracellularly after a 6-h period in dye-free medium. Video-enhanced fluorescence microscopy corroborates the rapid uptake measurements as well as indicating the intracellular localization of the dyes in both living and thermally inactivated cells. Low extracellular dye concentrations (0.05 microM) result in a punctate fluorescence pattern in the perinuclear region, while higher dye concentrations (> 0.1 microM) lead to additional fluorescence in the cytoplasm, cytomembranes, and other organelles but apparently not the nucleus. Absorption spectrometry revealed that living cells rapidly reduce Topics: Animals; Cell Survival; Dihematoporphyrin Ether; Drug Screening Assays, Antitumor; Mammary Neoplasms, Animal; Mice; Microscopy, Fluorescence; Organoselenium Compounds; Oxazines; Oxidation-Reduction; Photochemotherapy; Sarcoma; Thiazines; Tumor Cells, Cultured | 1993 |