5--deoxyadenosine and 5--methylthioadenosine

5--deoxyadenosine has been researched along with 5--methylthioadenosine* in 5 studies

Other Studies

5 other study(ies) available for 5--deoxyadenosine and 5--methylthioadenosine

ArticleYear
A bifunctional salvage pathway for two distinct S-adenosylmethionine by-products that is widespread in bacteria, including pathogenic Escherichia coli.
    Molecular microbiology, 2020, Volume: 113, Issue:5

    S-adenosyl-l-methionine (SAM) is a necessary cosubstrate for numerous essential enzymatic reactions including protein and nucleotide methylations, secondary metabolite synthesis and radical-mediated processes. Radical SAM enzymes produce 5'-deoxyadenosine, and SAM-dependent enzymes for polyamine, neurotransmitter and quorum sensing compound synthesis produce 5'-methylthioadenosine as by-products. Both are inhibitory and must be addressed by all cells. This work establishes a bifunctional oxygen-independent salvage pathway for 5'-deoxyadenosine and 5'-methylthioadenosine in both Rhodospirillum rubrum and Extraintestinal Pathogenic Escherichia coli. Homologous genes for this pathway are widespread in bacteria, notably pathogenic strains within several families. A phosphorylase (Rhodospirillum rubrum) or separate nucleoside and kinase (Escherichia coli) followed by an isomerase and aldolase sequentially function to salvage these two wasteful and inhibitory compounds into adenine, dihydroxyacetone phosphate and acetaldehyde or (2-methylthio)acetaldehyde during both aerobic and anaerobic growth. Both SAM by-products are metabolized with equal affinity during aerobic and anaerobic growth conditions, suggesting that the dual-purpose salvage pathway plays a central role in numerous environments, notably the human body during infection. Our newly discovered bifunctional oxygen-independent pathway, widespread in bacteria, salvages at least two by-products of SAM-dependent enzymes for carbon and sulfur salvage, contributing to cell growth.

    Topics: Bacterial Proteins; Carbon; Deoxyadenosines; Dihydroxyacetone Phosphate; Escherichia coli; Fructose-Bisphosphate Aldolase; Isomerases; Metabolic Networks and Pathways; Methionine; N-Glycosyl Hydrolases; Oxygen; Phosphorylases; Phosphotransferases; Rhodospirillum rubrum; S-Adenosylmethionine; Thionucleosides

2020
Williams-Beuren syndrome-related methyltransferase WBSCR27: cofactor binding and cleavage.
    The FEBS journal, 2020, Volume: 287, Issue:24

    Williams-Beuren syndrome, characterized by numerous physiological and mental problems, is caused by the heterozygous deletion of chromosome region 7q11.23, which results in the disappearance of 26 protein-coding genes. Protein WBSCR27 is a product of one of these genes whose biological function has not yet been established and for which structural information has been absent until now. Using NMR, we investigated the structural and functional properties of murine WBSCR27. For protein in the apo form and in a complex with S-(5'-adenosyl)-l-homocysteine (SAH), a complete NMR resonance assignment has been obtained and the secondary structure has been determined. This information allows us to attribute WBSCR27 to Class I methyltransferases. The interaction of WBSCR27 with the cofactor S-(5'-adenosyl)-l-methionine (SAM) and its metabolic products - SAH, 5'-deoxy-5'-methylthioadenosine (MTA) and 5'-deoxyadenosine (5'dAdo) - was studied by NMR and isothermal titration calorimetry. SAH binds WBSCR27 much tighter than SAM, leaving open the question of cofactor turnover in the methylation reaction. One possible answer to this question is the presence of weak but detectable nucleosidase activity for WBSCR27. We found that the enzyme catalyses the cleavage of the adenine moiety from SAH, MTA and 5'dAdo, similar to the action of bacterial SAH/MTA nucleosidases. We also found that the binding of SAM or SAH causes a significant change in the structure of WBSCR27 and in the conformational mobility of the protein fragments, which can be attributed to the substrate recognition site. This indicates that the binding of the cofactor modulates the folding of the substrate-recognizing region of the enzyme.

    Topics: Animals; Apoenzymes; Deoxyadenosines; Methyltransferases; Mice; Protein Conformation; S-Adenosylhomocysteine; S-Adenosylmethionine; Thionucleosides

2020
Transition State Structure and Inhibition of Rv0091, a 5'-Deoxyadenosine/5'-methylthioadenosine Nucleosidase from Mycobacterium tuberculosis.
    ACS chemical biology, 2016, 06-17, Volume: 11, Issue:6

    5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a bacterial enzyme that catalyzes the hydrolysis of the N-ribosidic bond in 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH). MTAN activity has been linked to quorum sensing pathways, polyamine biosynthesis, and adenine salvage. Previously, the coding sequence of Rv0091 was annotated as a putative MTAN in Mycobacterium tuberculosis. Rv0091 was expressed in Escherichia coli, purified to homogeneity, and shown to be a homodimer, consistent with MTANs from other microorganisms. Substrate specificity for Rv0091 gave a preference for 5'-deoxyadenosine relative to MTA or SAH. Intrinsic kinetic isotope effects (KIEs) for the hydrolysis of [1'-(3)H], [1'-(14)C], [5'-(3)H2], [9-(15)N], and [7-(15)N]MTA were determined to be 1.207, 1.038, 0.998, 1.021, and 0.998, respectively. A model for the transition state structure of Rv0091 was determined by matching KIE values predicted via quantum chemical calculations to the intrinsic KIEs. The transition state shows a substantial loss of C1'-N9 bond order, well-developed oxocarbenium character of the ribosyl ring, and weak participation of the water nucleophile. Electrostatic potential surface maps for the Rv0091 transition state structure show similarity to DADMe-immucillin transition state analogues. DADMe-immucillin transition state analogues showed strong inhibition of Rv0091, with the most potent inhibitor (5'-hexylthio-DADMe-immucillinA) displaying a Ki value of 87 pM.

    Topics: Adenosine; Deoxyadenosines; Imino Furanoses; Mycobacterium tuberculosis; Purine-Nucleoside Phosphorylase; Pyrimidinones; Pyrrolidines; Quantum Theory; S-Adenosylhomocysteine; Thionucleosides

2016
Radical SAM activation of the B12-independent glycerol dehydratase results in formation of 5'-deoxy-5'-(methylthio)adenosine and not 5'-deoxyadenosine.
    Biochemistry, 2011, Feb-01, Volume: 50, Issue:4

    Activation of glycyl radical enzymes (GREs) by S-adenosylmethonine (AdoMet or SAM)-dependent enzymes has long been shown to proceed via the reductive cleavage of SAM. The AdoMet-dependent (or radical SAM) enzymes catalyze this reaction by using a [4Fe-4S] cluster to reductively cleave AdoMet to form a transient 5'-deoxyadenosyl radical and methionine. This radical is then transferred to the GRE, and methionine and 5'-deoxyadenosine are also formed. In contrast to this paradigm, we demonstrate that generation of a glycyl radical on the B(12)-independent glycerol dehydratase by the glycerol dehydratase activating enzyme results in formation of 5'-deoxy-5'-(methylthio)adenosine and not 5'-deoxyadenosine. This demonstrates for the first time that radical SAM activases are also capable of an alternative cleavage pathway for SAM.

    Topics: Catalysis; Deoxyadenosines; Electron Spin Resonance Spectroscopy; Enzyme Activation; Free Radicals; Glycine; Hydro-Lyases; Methionine; Oxidation-Reduction; S-Adenosylmethionine; Thionucleosides; Vitamin B 12

2011
Biotin synthase exhibits burst kinetics and multiple turnovers in the absence of inhibition by products and product-related biomolecules.
    Biochemistry, 2010, Nov-23, Volume: 49, Issue:46

    Biotin synthase (BS) is a member of the "SAM radical" superfamily of enzymes, which catalyze reactions in which the reversible or irreversible oxidation of various substrates is coupled to the reduction of the S-adenosyl-l-methionine (AdoMet) sulfonium to generate methionine and 5'-deoxyadenosine (dAH). Prior studies have demonstrated that these products are modest inhibitors of BS and other members of this enzyme family. In addition, the in vivo catalytic activity of Escherichia coli BS requires expression of 5'-methylthioadenosine/S-adenosyl-l-homocysteine nucleosidase, which hydrolyzes 5'-methylthioadenosine (MTA), S-adenosyl-l-homocysteine (AdoHcy), and dAH. In the present work, we confirm that dAH is a modest inhibitor of BS (K(i) = 20 μM) and show that cooperative binding of dAH with excess methionine results in a 3-fold enhancement of this inhibition. However, with regard to the other substrates of MTA/AdoHcy nucleosidase, we demonstrate that AdoHcy is a potent inhibitor of BS (K(i) ≤ 650 nM) while MTA is not an inhibitor. Inhibition by both dAH and AdoHcy likely accounts for the in vivo requirement for MTA/AdoHcy nucleosidase and may help to explain some of the experimental disparities between various laboratories studying BS. In addition, we examine possible inhibition by other AdoMet-related biomolecules present as common contaminants in commercial AdoMet preparations and/or generated during an assay, as well as by sinefungin, a natural product that is a known inhibitor of several AdoMet-dependent enzymes. Finally, we examine the catalytic activity of BS with highly purified AdoMet in the presence of MTAN to relieve product inhibition and present evidence suggesting that the enzyme is half-site active and capable of undergoing multiple turnovers in vitro.

    Topics: Binding Sites; Catalysis; Catalytic Domain; Deoxyadenosines; Kinetics; S-Adenosylhomocysteine; S-Adenosylmethionine; Substrate Specificity; Sulfurtransferases; Thionucleosides

2010