5-(4-chlorophenyl)-4h-1-2-4-triazole-3-thiol and indol-3-yl-pyruvic-acid

5-(4-chlorophenyl)-4h-1-2-4-triazole-3-thiol has been researched along with indol-3-yl-pyruvic-acid* in 1 studies

Other Studies

1 other study(ies) available for 5-(4-chlorophenyl)-4h-1-2-4-triazole-3-thiol and indol-3-yl-pyruvic-acid

ArticleYear
Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis.
    The Plant journal : for cell and molecular biology, 2014, Volume: 77, Issue:3

    Indole-3-acetic acid (IAA), an auxin plant hormone, is biosynthesized from tryptophan. The indole-3-pyruvic acid (IPyA) pathway, involving the tryptophan aminotransferase TAA1 and YUCCA (YUC) enzymes, was recently found to be a major IAA biosynthetic pathway in Arabidopsis. TAA1 catalyzes the conversion of tryptophan to IPyA, and YUC produces IAA from IPyA. Using a chemical biology approach with maize coleoptiles, we identified 5-(4-chlorophenyl)-4H-1,2,4-triazole-3-thiol (yucasin) as a potent inhibitor of IAA biosynthesis in YUC-expressing coleoptile tips. Enzymatic analysis of recombinant AtYUC1-His suggested that yucasin strongly inhibited YUC1-His activity against the substrate IPyA in a competitive manner. Phenotypic analysis of Arabidopsis YUC1 over-expression lines (35S::YUC1) demonstrated that yucasin acts in IAA biosynthesis catalyzed by YUC. In addition, 35S::YUC1 seedlings showed resistance to yucasin in terms of root growth. A loss-of-function mutant of TAA1, sav3-2, was hypersensitive to yucasin in terms of root growth and hypocotyl elongation of etiolated seedlings. Yucasin combined with the TAA1 inhibitor l-kynurenine acted additively in Arabidopsis seedlings, producing a phenotype similar to yucasin-treated sav3-2 seedlings, indicating the importance of IAA biosynthesis via the IPyA pathway in root growth and leaf vascular development. The present study showed that yucasin is a potent inhibitor of YUC enzymes that offers an effective tool for analyzing the contribution of IAA biosynthesis via the IPyA pathway to plant development and physiological processes.

    Topics: Arabidopsis; Arabidopsis Proteins; Biosynthetic Pathways; Cotyledon; Dose-Response Relationship, Drug; Gene Expression Regulation, Plant; Indoleacetic Acids; Indoles; Mutation; Oxygenases; Phenotype; Plant Growth Regulators; Plant Leaves; Plant Roots; Plant Shoots; Plants, Genetically Modified; Recombinant Fusion Proteins; Seedlings; Small Molecule Libraries; Triazoles; Tryptophan Transaminase; Zea mays

2014