4-oxoretinoic-acid and retinol-acetate

4-oxoretinoic-acid has been researched along with retinol-acetate* in 2 studies

Other Studies

2 other study(ies) available for 4-oxoretinoic-acid and retinol-acetate

ArticleYear
Comparative distribution, pharmacokinetics and placental permeabilities of all-trans-retinoic acid, 13-cis-retinoic acid, all-trans-4-oxo-retinoic acid, retinyl acetate and 9-cis-retinal in hamsters.
    Archives of toxicology, 1989, Volume: 63, Issue:2

    Pregnant hamsters were given a single oral dose (35 mumol/kg) of all-trans-retinoic acid, 13-cis-retinoic acid, all-trans-4-oxo-retinoic acid, 9-cis-retinal or all-trans-retinyl acetate during the early primitive streak stage of development. The radioactivity associated with the acidic retinoids was distributed to all tissues sampled (including placenta and fetus), with the largest accumulation in the liver and the least accumulation in fat. Radioactivity from 9-cis-retinal or retinyl acetate concentrated in the liver and lung. The all-trans-retinoic acid was oxidized in vivo to all-trans-4-oxo-retinoic acid and isomerized to 13-cis-retinoic acid: 13-cis-retinoic acid was oxidized to 13-cis-4-oxo-retinoic acid and isomerized to all-trans-retinoic acid. No parent 9-cis-retinal or retinyl acetate could be detected in maternal plasma. Plasma concentrations of the parent acidic retinoids reached their maxima within 60 min and then followed exponential decay. Of all the retinoids examined here, 13-cis-retinoic acid showed the largest area under the plasma curve, the slowest clearance and the longest elimination t1/2. Total plasma radioactivity, consisting of unidentified metabolites, remained elevated at 4 days after dosing. Maternal peak circulating concentrations of the parent retinoids, total radioactivity, plasma pharmacokinetic parameters or the total concentrations of residual radioactivity in fetal tissues could not be correlated with the differential teratogenic potencies of these retinoids.

    Topics: Animals; Cricetinae; Diterpenes; Female; Mesocricetus; Permeability; Placenta; Pregnancy; Retinaldehyde; Retinoids; Retinyl Esters; Tissue Distribution; Tretinoin; Vitamin A

1989
Metabolism and biological activity of all-trans 4,4-difluororetinyl acetate.
    Biochimica et biophysica acta, 1984, Jun-15, Volume: 799, Issue:2

    All-trans [11-3H]4,4- difluororetinyl acetate was synthesized by treating methyl all-trans [11-3H]4- oxoretinoate with diethylaminosulfurtrifluoride , followed by reduction and acetylation of the product. After oral administration of the radioactive difluoro analog in oil to rats, difluororetinol , difluororetinyl palmitate and related esters, 4- oxoretinol , 4- oxoretinoic acid and polar conjugated derivatives were identified in the intestine, liver, kidney and/or blood. The major metabolic products were difluororetinyl palmitate and related esters, which were stored in the liver. The presence of the difluoro analog in liver oil from treated rats was confirmed by 19F-NMR spectroscopy. Neither retinol nor retinyl esters were detected as products of the metabolism of the difluoro analog. Nonetheless, all-trans difluororetinyl acetate showed 26 +/- 12% of the biological activity of all-trans retinyl acetate in the rat growth assay. Presumably, the difluoro analog is active per se in growth rather than by conversion to retinol or to one of its known growth-promoting metabolites. In general, however, the difluoro analog was metabolized in a manner very similar to vitamin A. The vitamin A moiety of administered difluororetinyl acetate and retinyl acetate was poorly stored (1.8-3.3%) in the liver of vitamin A-depleted rats, confirming and extending past reports that the liver storage mechanism is severely impaired when initial liver stores are very low.

    Topics: Animals; Biological Assay; Body Weight; Diterpenes; Feces; Kinetics; Liver; Magnetic Resonance Spectroscopy; Male; Rats; Rats, Inbred Strains; Retinyl Esters; Tissue Distribution; Tretinoin; Vitamin A

1984