4-methylethcathinone has been researched along with pentedrone* in 2 studies
2 other study(ies) available for 4-methylethcathinone and pentedrone
Article | Year |
---|---|
Methylenedioxymethamphetamine-like discriminative stimulus effects of seven cathinones in rats.
Synthetic cathinone derivatives are commonly considered quasi-legal alternatives for stimulant drugs, such as cocaine and methamphetamine, but some derivatives are increasingly being detected in club drug formulations of Ecstasy or 'Molly' as substitutes for methylenedioxymethamphetamine (±-MDMA). Although several studies have evaluated the psychostimulant-like effects of synthetic cathinones, few cathinone compounds have been assessed for MDMA-like activity. In order to determine their likelihood of interchangeability with entactogenic club drugs, the discriminative stimulus effects of methcathinone, 4-fluoromethcathinone, 4-methylmethcathinone, 4-methylethcathinone, 3-fluoromethcathinone, pentedrone, and ethylone were assessed in Sprague-Dawley rats trained to discriminate 1.5 mg/kg racemic methylenedioxymethamphetamine (±-MDMA) from vehicle. Methamphetamine and the cathinones 4-fluoromethcathinone, 4-methylmethcathinone, 4-methylethcathinone, 3-fluoromethcathinone, pentedrone, and ethylone fully substituted for the discriminative stimulus effects of ±-MDMA. In contrast, methcathinone produced a maximum of only 43% ±-MDMA-appropriate responding and higher doses suppressed responding. Most, but not all of the cathinone compounds tested have discriminative stimulus effects similar to those of MDMA as well as psychostimulant-like effects; however, the potency of MDMA versus psychostimulant substitution varies substantially among the compounds, suggesting that a subset of synthetic cathinones are more MDMA-like than psychostimulant-like. These findings further highlight the highly-variable pharmacology of this class of compounds and suggest that those cathinones with MDMA-like effects may also have increased use as club drugs. Topics: Acetone; Amphetamines; Animals; Discrimination Learning; Ethylamines; Male; Methamphetamine; Methylamines; N-Methyl-3,4-methylenedioxyamphetamine; Pentanones; Propiophenones; Rats | 2020 |
Monoamine transporter and receptor interaction profiles of a new series of designer cathinones.
Psychoactive β-keto amphetamines (cathinones) are sold as "bath salts" or "legal highs" and recreationally abused. We characterized the pharmacology of a new series of cathinones, including methedrone, 4-methylethcathinone (4-MEC), 3-fluoromethcathinone (3-FMC), pentylone, ethcathinone, buphedrone, pentedrone, and N,N-dimethylcathinone. We investigated norepinephrine (NE), dopamine (DA), and serotonin (5-HT) uptake inhibition using human embryonic kidney 293 (HEK 293) cells that express the respective human monoamine transporter, the drug-induced efflux of NE, DA, and 5-HT from monoamine-preloaded cells, and binding affinity to monoamine transporters and receptors. All of the cathinones were potent NE uptake inhibitors but differed in their DA vs. 5-HT transporter inhibition profiles and monoamine release effects. Methedrone was a more potent 5-HT than DA transporter inhibitor and released NE and 5-HT similar to para-methoxymethamphetamine (PMMA), para-methoxyamphetamine (PMA), 4-methylthioamphetamine (4-MTA), and 3,4-methylenedioxymethamphetamine (MDMA). 4-MEC and pentylone equipotently inhibited all of the monoamine transporters and released 5-HT. Ethcathinone and 3-FMC inhibited NE and DA uptake and released NE, and 3-FMC also released DA similar to N-ethylamphetamine and methamphetamine. Pentedrone and N,N-dimethylcathinone were non-releasing NE and DA uptake inhibitors as previously shown for pyrovalerone cathinones. Buphedrone preferentially inhibited NE and DA uptake and also released NE. None of the cathinones bound to rodent trace amine-associated receptor 1, in contrast to the non-β-keto-amphetamines. None of the cathinones exhibited relevant binding to other monoamine receptors. In summary, we found considerable differences in the monoamine transporter interaction profiles among different cathinones and compared with related amphetamines. Topics: Adrenergic Uptake Inhibitors; Amphetamines; Biogenic Monoamines; Butyrophenones; Designer Drugs; Dopamine Uptake Inhibitors; HEK293 Cells; Humans; Methylamines; Pentanones; Plasma Membrane Neurotransmitter Transport Proteins; Propiophenones; Receptors, Biogenic Amine; Selective Serotonin Reuptake Inhibitors | 2014 |