4-mercaptophenol has been researched along with thiophenol* in 2 studies
2 other study(ies) available for 4-mercaptophenol and thiophenol
Article | Year |
---|---|
Toward understanding the influence of intermolecular interactions and molecular orientation on the chemical enhancement of SERS.
Implementation of SERS as an analytical technique is limited because the factors that govern the enhancement of individual vibrational modes are not well understood. Although the chemical effect only accounts for up to two orders of magnitude enhancement, it can still have a significant impact on the consistency of chemical spectral signatures. We report on a combined theoretical and experimental study on the benzenethiol on silver and 4-mercaptophenol on silver systems. The primary and unique finding was that for the benzenethiol on silver system the inclusion of interaction between multiple benzenethiol analyte molecules was essential to account for the relative enhancements observed experimentally. An examination of the molecular orbitals showed sharing of electron density across the entire model of multiple benzenethiol molecules mediated by the metal atoms. The addition of multiple 4-mercaptophenol molecules to the theoretical model had little effect on the predicted spectra, and we attribute this to the fact that a much larger model is necessary to replicate the networks of hydrogen bonds. Molecular orientation was also found to affect the predicted spectra, and it was found that an upright position improved agreement between theoretical and experimental spectra. An analysis of the vibrational frequency shifts between the normal Raman spectrum of the neat compound and the SERS spectrum also suggests that both benzenethiol and 4-mercaptophenol are in an upright position. Topics: Metal Nanoparticles; Phenols; Quantum Theory; Silver; Spectrum Analysis, Raman; Sulfhydryl Compounds | 2013 |
4-Mercaptophenylboronic acid SAMs on gold: comparison with SAMs derived from thiophenol, 4-mercaptophenol, and 4-mercaptobenzoic acid.
We report the formation and characterization of self-assembled monolayers (SAMs) derived from the adsorption of 4-mercaptophenylboronic acid (MPBA) on gold. For comparison, SAMs derived from the adsorption of thiophenol (TP), 4-mercaptophenol (MP), and 4-mercaptobenzoic acid (MBA) were also examined. The structure and properties of the SAMs were evaluated by ellipsometry, contact-angle goniometry, polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). Specifically, ellipsometry was used to assess the formation of monolayer films, and contact angle measurements were used to determine the surface hydrophilicity and homogeneity. Separately, PM-IRRAS was used to evaluate the molecular composition and orientation as well as the intermolecular hydrogen bonding within the SAMs. Finally, XPS was used to evaluate the film composition and surface coverage (i.e., packing density), which was observed to increase in the following order: TP < MP < MPBA < MBA. A rationalization for the observed packing differences is presented. The XPS data indicate further that ultrahigh vacuum conditions induce the partial dehydration of MPBA SAMs with the concomitant formation of surface boronic anhydride species. Overall, the analytical data collectively show that the MPBA moieties in the SAMs exist in the acid form rather than the anhydride form under ambient laboratory conditions. Furthermore, stability studies find that MPBA SAMs are surprisingly labile in basic solution, where the terminal B-C bonds are cleaved by the attack of hydroxide ion and strongly basic amine nucleophiles. The unanticipated lability observed here should be considered by those wishing to use MPBA moieties in carbohydrate-sensing applications. Topics: Benzoates; Boronic Acids; Esters; Gold; Molecular Structure; Phenols; Spectrophotometry; Sulfhydryl Compounds; Surface Properties | 2007 |