4-iodo-2-5-dimethoxyphenylisopropylamine--(r)-isomer and 4-iodo-2-5-dimethoxyphenylisopropylamine

4-iodo-2-5-dimethoxyphenylisopropylamine--(r)-isomer has been researched along with 4-iodo-2-5-dimethoxyphenylisopropylamine* in 2 studies

Other Studies

2 other study(ies) available for 4-iodo-2-5-dimethoxyphenylisopropylamine--(r)-isomer and 4-iodo-2-5-dimethoxyphenylisopropylamine

ArticleYear
High-affinity agonist binding correlates with efficacy (intrinsic activity) at the human serotonin 5-HT2A and 5-HT2C receptors: evidence favoring the ternary complex and two-state models of agonist action.
    Journal of neurochemistry, 1999, Volume: 72, Issue:5

    Many modern models of receptor-G protein function assume that there is a direct relationship between high-affinity agonist binding and efficacy. The validity of this assumption has been recently questioned for the serotonin 5-HT2A receptor. We examined the intrinsic activities of various ligands in activating phosphoinositide hydrolysis and measured their respective binding affinities to the high- and low-affinity states of the 5-HT2C (VNV isoform) and 5-HT(2A) receptors. Ligand binding affinities for the high-affinity state of the receptors were determined using 1-(4-[125I]iodo-2,5-dimethoxyphenyl)2-aminopropane, whereas [3H]mesulergine and N-[3H]methylspiperone were used, in the presence of excess guanine nucleotide [guanosine 5'-O-(3-thiotriphosphate)], to define binding to the low-affinity state of the 5-HT2C and 5-HT2A receptors, respectively. Antagonists labeled the high- and low-affinity states of each receptor with comparable affinities. Previously identified inverse agonists of the 5-HT2C receptor behaved as silent antagonists in our systems even when the receptor was overexpressed at a relatively high density. In contrast, the ability of agonists to bind differentially to the high- and low-affinity states of the 5-HT2A and 5-HT2C receptors was highly correlated (r2 = 0.86 and 0.96, respectively) with their intrinsic activities. These data suggest that high-affinity agonist states can account for agonist efficacy at human 5-HT2A or 5-HT2C receptors without the need for considering additional transition or active states of the receptor-ligand complex. The procedure described herein may expedite drug discovery efforts by predicting intrinsic activities of ligands solely from ligand binding assays.

    Topics: Amphetamines; Binding, Competitive; Cell Line; Ergolines; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Hydrolysis; Isomerism; Ligands; Models, Biological; Phosphatidylinositols; Receptors, Serotonin; Recombinant Proteins; Serotonin Antagonists; Serotonin Receptor Agonists; Spiperone

1999
Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, -HT(2B) and 5-HT2C receptors.
    Naunyn-Schmiedeberg's archives of pharmacology, 1999, Volume: 359, Issue:1

    Since the classical hallucinogens were initially reported to produce their behavioral effects via a 5-HT2 agonist mechanism (i.e., the 5-HT2 hypothesis of hallucinogen action), 5-HT2 receptors have been demonstrated to represent a family of receptors that consists of three distinct subpopulations: 5-HT2A, 5-HT2B, and 5-HT2C receptors. Today, there is greater support for 5-HT2A than for 5-HT2C receptor involvement in the behavioral effects evoked by these agents. However, with the recent discovery of 5-HT2B receptors, a new question arises: do classical hallucinogens bind at 5-HT2B receptors? In the present study we examined and compared the binding of 17 phenylisopropylamines at human 5-HT2A, 5-HT2B, and 5-HT2C receptors. Although there was a notable positive correlation (r>0.9) between the affinities of the agents at all three populations of 5-HT2 receptors, structural modification resulted only in small differences in 5-HT2B receptor affinity such that the range of affinities was only about 50-fold. As with 5-HT2A and 5-HT2C receptor affinity, there is a significant correlation (r>0.9, n=8) between 5-HT2B receptor affinity and human hallucinogenic potency. Nevertheless, given that 5-HT2A and 5-HT2A/2C antagonists - antagonists with low affinity for 5-HT2B receptors - have been previously shown to block the stimulus effects of phenylisopropylamine hallucinogens, it is likely that 5-HT2A receptors play a more prominent role than 5-HT2B and 5-HT2C receptors in mediating such effects despite the affinity of these agents for all three 5-HT2 receptor subpopulations.

    Topics: Amphetamines; Animals; Cloning, Molecular; Hallucinogens; Humans; Propylamines; Radioligand Assay; Rats; Receptor, Serotonin, 5-HT2A; Receptor, Serotonin, 5-HT2B; Receptor, Serotonin, 5-HT2C; Receptors, Serotonin; Recombinant Proteins; Serotonin Receptor Agonists; Structure-Activity Relationship

1999