4-hydroxyindol-3-ylmethylglucosinolate has been researched along with glucobrassicin* in 2 studies
2 other study(ies) available for 4-hydroxyindol-3-ylmethylglucosinolate and glucobrassicin
Article | Year |
---|---|
Use of elicitation in the cultivation of Bimi® for food and ingredients.
Cruciferous foods rich in health-promoting metabolites are of particular interest to consumers as well as being a good source of bioactives-enriched ingredients. Several elicitors have been used to stimulate the biosynthesis and accumulation of secondary metabolites in foods; however, little is known about the response of new hybrid varieties, such as Bimi®, under field-crop production conditions. Therefore, this study was designed to evaluate the effect of salicylic acid (200 μmol L. The results indicate that the combined treatment (SA + MeJA) significantly increased the content of glucosinolates in the inflorescences and that MeJA was the most effective elicitor in leaves. Regarding the aqueous extracts, the greatest amount of glucosinolates was extracted at 30 min - except for the leaves elicited with MeJA, for which 15 min was optimal.. The elicitation in the field enriched leaves in glucobrassicin (GB), 4-methoxyglucobrassicin (MGB), and neoglucobrassicin (NGB) and stems and inflorescences in glucoraphanin, 4-hydroxyglucobrassicin, GB, MGB, and NGB. In this way, this enhanced vegetable material favored the presence of bioactives in the extracts, which is of great interest regarding enriched foods and ingredients with added value obtained from them. © 2019 Society of Chemical Industry. Topics: Acetates; Brassica; Cyclopentanes; Food Analysis; Glucosinolates; Imidoesters; Indoles; Inflorescence; Oximes; Oxylipins; Plant Leaves; Plant Stems; Salicylic Acid; Sulfoxides | 2020 |
Investigation of glucosinolate profile and qualitative aspects in sprouts and roots of horseradish (Armoracia rusticana) using LC-ESI-hybrid linear ion trap with Fourier transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissocia
Within the family of Brassicaceae, an important source of glucosinolates (GLSs) is represented by horseradish ( Armoracia rusticana P. Gaertner, B. Meyer & Scherbius), cultivated for its roots, which are grated fresh or processed into a sauce and used as a condiment. The characteristic pungent flavor of the root depends on the abundance of the bioactive GLS molecules. In crude plant extracts (sprouts and roots) of an accession of horseradish largely diffused in the Basilicata region (southern Italy), which develops many sprouts and produces white, fiery, and sharp-flavored marketable roots, we characterized the GLS profile by LC-ESI-LTQ-FTICR-MS and IRMPD. In sprouts and roots we identified 16 and 11 GLSs, respectively. We confirmed the presence of sinigrin, 4-hydroxyglucobrassicin, glucobrassicin, gluconasturtin, and 4-methoxyglucobrassicin and identified glucoiberin, gluconapin, glucocochlearin, glucoconringianin, glucosativin, glucoibarin, 5-hydroxyglucobrassicin, glucocapparilinearisin or glucobrassicanapin, glucotropaeolin, and glucoarabishirsutain, not previously characterized in horseradish. Of particular note was the presence of the putative 2-methylsulfonyl-oxo-ethyl-GLS. Topics: Armoracia; Chromatography, Liquid; Cyclotrons; Fourier Analysis; Glucosinolates; Indoles; Italy; Mass Spectrometry; Plant Roots; Sulfuric Acids | 2012 |