4-hydroxyestradiol has been researched along with ebselen* in 2 studies
2 other study(ies) available for 4-hydroxyestradiol and ebselen
Article | Year |
---|---|
Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells.
The purpose of this study was to investigate the effects of 17-β-estradiol (E2)-induced reactive oxygen species (ROS) on the induction of mammary tumorigenesis. We found that ROS-induced by repeated exposures to 4-hydroxy-estradiol (4-OH-E2), a predominant catechol metabolite of E2, caused transformation of normal human mammary epithelial MCF-10A cells with malignant growth in nude mice. This was evident from inhibition of estrogen-induced breast tumor formation in the xenograft model by both overexpression of catalase as well as by co-treatment with Ebselen. To understand how 4-OH-E2 induces this malignant phenotype through ROS, we investigated the effects of 4-OH-E2 on redox-sensitive signal transduction pathways. During the malignant transformation process we observed that 4-OH-E2 treatment increased AKT phosphorylation through PI3K activation. The PI3K-mediated phosphorylation of AKT in 4-OH-E2-treated cells was inhibited by ROS modifiers as well as by silencing of AKT expression. RNA interference of AKT markedly inhibited 4-OH-E2-induced in vitro tumor formation. The expression of cell cycle genes, cdc2, PRC1 and PCNA and one of transcription factors that control the expression of these genes - nuclear respiratory factor-1 (NRF-1) was significantly up-regulated during the 4-OH-E2-mediated malignant transformation process. The increased expression of these genes was inhibited by ROS modifiers as well as by silencing of AKT expression. These results indicate that 4-OH-E2-induced cell transformation may be mediated, in part, through redox-sensitive AKT signal transduction pathways by up-regulating the expression of cell cycle genes cdc2, PRC1 and PCNA, and the transcription factor - NRF-1. In summary, our study has demonstrated that: (i) 4-OH-E2 is one of the main estrogen metabolites that induce mammary tumorigenesis and (ii) ROS-mediated signaling leading to the activation of PI3K/AKT pathway plays an important role in the generation of 4-OH-E2-induced malignant phenotype of breast epithelial cells. In conclusion, ROS are important signaling molecules in the development of estrogen-induced malignant breast lesions. Topics: Animals; Azoles; Catalase; Catechols; Cell Cycle Proteins; Cell Proliferation; Cell Transformation, Neoplastic; Collagen; Colony-Forming Units Assay; Dose-Response Relationship, Drug; Epithelial Cells; Estradiol; Estrogens, Catechol; Fulvestrant; Gene Expression Regulation, Neoplastic; Humans; Isoindoles; Mammary Glands, Human; Mice; Models, Biological; Neoplasm Invasiveness; Organoselenium Compounds; Oxidation-Reduction; Phenotype; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Signal Transduction; Spheroids, Cellular | 2013 |
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
Given their medical importance, proteases have been studied by diverse approaches and screened for small molecule protease inhibitors. Here, we present a multiplexed microsphere-based protease assay that uses high-throughput flow cytometry to screen for inhibitors of the light chain protease of botulinum neurotoxin type A (BoNTALC). Our assay uses a full-length substrate and several deletion mutants screened in parallel to identify small molecule inhibitors. The use of multiplex flow cytometry has the advantage of using full-length substrates, which contain already identified distal-binding elements for the BoNTALC, and could lead to a new class of BoNTALC inhibitors. In this study, we have screened 880 off patent drugs and bioavailable compounds to identify ebselen as an in vitro inhibitor of BoNTALC. This discovery demonstrates the validity of our microsphere-based approach and illustrates its potential for high-throughput screening for inhibitors of proteases in general. Topics: Antigens, Bacterial; Azoles; Bacterial Toxins; Botulinum Toxins, Type A; Drug Evaluation, Preclinical; Flow Cytometry; Fluorescence Resonance Energy Transfer; High-Throughput Screening Assays; Isoindoles; Metalloproteases; Microspheres; Organoselenium Compounds; Protease Inhibitors | 2010 |