4-hydroxyestradiol has been researched along with 4-methoxyestradiol* in 6 studies
6 other study(ies) available for 4-hydroxyestradiol and 4-methoxyestradiol
Article | Year |
---|---|
Estradiol 17β and its metabolites stimulate cell proliferation and antagonize ascorbic acid-suppressed cell proliferation in human ovarian cancer cells.
Estradiol 17β (E2β) and ascorbic acid (AA) have been implicated in cancer progression. However, little is known about the actions of biologically active metabolites of E2β, 2-hydroxyestradiol (2OHE2), 4-hydroxyestradiol (4OHE2), 2-methoxyestradiol (2ME2), and 4-methoxyestradiol (4ME2) synthesized sequentially by cytochrome P450, family 1, subfamily A (CYP1A1) and B (CYP1B1), polypeptide 1, and catechol-O-methyltransferase (COMT) on ovarian cancer. Herein, we examined the expression of CYP1A1, CYP1B1, COMT, and estrogen receptor α (ERα) and β (ERβ) in human ovarian surface epithelial (IOSE-385) and cancer cell lines (OVCAR-3, SKOV-3, and OVCA-432). We also investigated the roles of E2β, 2OHE2, 4OHE2, 2ME2, and 4ME2 in cell proliferation, and their interactive effects with AA on ovarian cells. We found the expression of CYP1A1, CYP1B1, COMT, ERα, and ERβ in most cell lines tested. Treating cells with physiological concentrations of E2β and its metabolites promoted (13%-42% of the control) IOSE-385 and OVCAR-3 proliferation. The ER blockade inhibited IOSE-385 (∼76%) and OVCAR-3 (∼87%) proliferative response to E2β but not to its metabolites. The ERα blockade inhibited (∼85%) E2β-stimulated OVCAR-3 proliferation, whereas ERβ blockade attenuated (∼83%) E2β-stimulated IOSE-385 proliferation. The AA at ≥250 μmol/L completely inhibited serum-stimulated cell proliferation in all cell lines tested; however, such inhibition in IOSE-385, OVCAR-3, and OVCA-432 was partially (∼10%-20%) countered by E2β and its metabolites. Thus, our findings indicate that E2β and its metabolites promote cell proliferation and antagonize the AA-suppressed cell proliferation in a subset of ovarian cancer cells, suggesting that blocking the actions of E2β and its metabolites may enhance AA's antiovarian cancer activity. Topics: 2-Methoxyestradiol; Aryl Hydrocarbon Hydroxylases; Ascorbic Acid; Catechol O-Methyltransferase; Cell Line, Tumor; Cell Proliferation; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1B1; Dose-Response Relationship, Drug; Drug Interactions; Estradiol; Estrogen Antagonists; Estrogen Receptor alpha; Estrogen Receptor beta; Estrogens, Catechol; Female; Humans; Ovarian Neoplasms; Time Factors | 2014 |
Catechol-O-methyltransferase-mediated metabolism of 4-hydroxyestradiol inhibits the growth of human renal cancer cells through the apoptotic pathway.
Long-term exposure to estrogen and its metabolites may play an important role in renal cell carcinogenesis. Catechol-O-methyltransferase (COMT) participates in the estrogen metabolism pathway by neutralizing toxic substances. Although reduced COMT activity has been suggested to be a risk factor for estrogen-associated cancers, no studies have investigated the biological significance of COMT in the pathogenesis of human renal cell cancers (RCCs). We initially found that COMT levels are significantly decreased in human RCC tissues and cells suggesting it plays a suppressive role in tumor development. However, transient overexpression of COMT has no functional effect on RCC cell lines. In contrast, when cells overexpressing COMT are treated with its substrate 4-hydroxyestradiol (4-OHE(2)), growth is inhibited by apoptotic cell death. We also found that COMT overexpression combined with 4-OHE(2) induces upregulation of growth arrest- and DNA damage-inducible protein α (GADD45α). We further show that downregulation of GADD45α by a small interfering RNA-mediated approach inhibits cell death, indicating the essential role of GADD45α in the underlying mechanism of COMT action in response to 4-OHE(2). Finally, 4-methoxyestradiol fully reproduces the antiproliferative function of COMT with 4-OHE(2) by promoting GADD45α induction. Together, these findings show that COMT in the presence of 4-OHE(2) prevents RCC cell proliferation by enhancing apoptosis and that GADD45α plays a critical role in the COMT-mediated inhibition of RCC. Topics: Apoptosis; Carcinoma, Renal Cell; Catechol O-Methyltransferase; Cell Cycle Proteins; Cell Death; Cell Growth Processes; Cell Line; Cell Line, Tumor; Down-Regulation; Estradiol; Estrogens, Catechol; Humans; Kidney Neoplasms; Nuclear Proteins; RNA, Messenger; Up-Regulation | 2012 |
A methoxyflavonoid, chrysoeriol, selectively inhibits the formation of a carcinogenic estrogen metabolite in MCF-7 breast cancer cells.
A 17beta-estradiol (E(2)) is hydrolyzed to 2-hydroxy-E(2) (2-OHE(2)) and 4-hydroxy-E(2) (4-OHE(2)) via cytochrome P450 (CYP) 1A1 and 1B1, respectively. In estrogen target tissues including the mammary gland, ovaries, and uterus, CYP1B1 is highly expressed, and 4-OHE(2) is predominantly formed in cancerous tissues. In this study, we investigated the inhibitory effects of chrysoeriol (luteorin-3'-methoxy ether), which is a natural methoxyflavonoid, against activity of CYP1A1 and 1B1 using in vitro and cultured cell techniques. Chrysoeriol selectively inhibited human recombinant CYP1B1-mediated 7-ethoxyresorufin-O-deethylation (EROD) activity 5-fold more than that of CYP1A1-mediated activity in a competitive manner. Additionally, chrysoeriol inhibited E(2) hydroxylation was catalyzed by CYP1B1, but not by CYP1A1. Methylation of 4-OHE(2), which is thought to be a detoxification process, was not affected by the presence of chrysoeriol. In human breast cancer MCF-7 cells, chrysoeriol did not affect the gene expression of CYP1A1 and 1B1, but significantly inhibited the formation of 4-methoxy E(2) without any effects on the formation of 2-methoxy E(2). In conclusion, we present the first report to show that chrysoeriol is a chemopreventive natural ingredient that can selectively inhibit CYP1B1 activity and prevent the formation of carcinogenic 4-OHE(2) from E(2.). Topics: 2-Methoxyestradiol; Aryl Hydrocarbon Hydroxylases; Biocatalysis; Breast Neoplasms; Carcinogens; Catechol O-Methyltransferase; Cell Line, Tumor; Chemoprevention; Culture Media, Conditioned; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Cytosol; Enzyme Inhibitors; Estradiol; Estrogens, Catechol; Female; Flavones; Flavonoids; Gene Expression; Glucuronidase; Humans; Hydroxylation; Kinetics; Methylation; Oxazines; Recombinant Proteins; Sulfatases | 2010 |
Catechol-o-methyltransferase and methoxyestradiols participate in the intraoviductal nongenomic pathway through which estradiol accelerates egg transport in cycling rats.
Estradiol (E(2)) accelerates oviductal egg transport through intraoviductal nongenomic pathways in cyclic rats and through genomic pathways in pregnant rats. This shift in pathways, which we have provisionally designated as intracellular path shifting (IPS), is caused by mating-associated signals and represents a novel and hitherto unrecognized phenomenon. The mechanism underlying IPS is currently under investigation. Using microarray analysis, we identified several genes the expression levels of which changed in the rat oviduct within 6 hours of mating. Among these genes, the mRNA level for the enzyme catechol-O-methyltransferase (COMT), which produces methoxyestradiols from hydroxyestradiols, decreased 6-fold, as confirmed by real-time PCR. O-methylation of 2-hydroxyestradiol was up to 4-fold higher in oviductal protein extracts from cyclic rats than from pregnant rats and was blocked by OR486, which is a selective inhibitor of COMT. The levels in the rat oviduct of mRNA and protein for cytochrome P450 isoforms 1A1 and 1B1, which form hydroxyestradiols, were detected by RT-PCR and Western blotting. We explored whether methoxyestradiols participate in the pathways involved in E(2)-accelerated egg transport. Intrabursal application of OR486 prevented E(2) from accelerating egg transport in cyclic rats but not in pregnant rats, whereas 2-methoxyestradiol (2ME) and 4-methoxyestradiol mimicked the effect of E(2) on egg transport in cyclic rats but not in pregnant rats. The effect of 2ME on egg transport was blocked by intrabursal administration of the protein kinase inhibitor H-89 or the antiestrogen ICI 182780, but not by actinomycin D or OR486. We conclude that in the absence of mating, COMT-mediated formation of methoxyestradiols in the oviduct is essential for the nongenomic pathway through which E(2) accelerates egg transport in the rat oviduct. Yet unidentified mating-associated signals, which act directly on oviductal cells, shut down the E(2) nongenomic signaling pathway upstream and downstream of methoxyestradiols. These findings highlight a physiological role for methoxyestradiols in the female genital tract, thereby confirming the occurrence of and providing a partial explanation for the mechanism underlying IPS. Topics: 2-Methoxyestradiol; Animals; Aryl Hydrocarbon Hydroxylases; Catechol O-Methyltransferase; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1B1; Egg Proteins; Estradiol; Estrogens, Catechol; Female; Gene Expression Regulation; Menstrual Cycle; Methylation; Oviducts; Ovum; Phosphorylation; Pregnancy; Rats; Rats, Sprague-Dawley; Receptors, Estrogen; Sexual Behavior, Animal | 2007 |
Selective synthesis of 4-methoxyestrogen from 4-hydroxyestrogen.
The introduction of an oxygen atom into the C-6 position of 4-hydroxyestrogen allowed for the selective methylation of the two phenolic hydroxyl groups. When the 6-oxo derivative of 4-hydroxyestrone was benzylated in ethanol, only the 3-monobenzyl ether was obtained without formation of the 4-monobenzyl ether. Moreover, the 6-carbonyl group was further reduced to methylene almost quantitatively in the reaction of 4-acetoxy-6-oxoestrone 3-benzyl ether derivative with sodium borohydride. Therefore, 4-methoxyestrogen was synthesized by essentially combining these two reactions. Topics: Estradiol; Estrogens; Estrogens, Catechol; Hydrocarbons; Methane; Methylation; Temperature | 2001 |
Cell-type specific responses in prostaglandin secretion by glandular and stromal cells from pig endometrium treated with catecholestrogens, methoxyestrogens and progesterone.
The pig conceptus and endometrium possess the ability to convert estrogens into catecholestrogens and catecholestrogens into methoxyestrogens. Experiments were carried out to evaluate the effect of catecholestrogens, methoxyestrogens and progesterone on the secretion of prostaglandin (PG) E and F2 alpha by porcine endometrial glandular and stromal cells in vitro. Both 2-hydroxyestradiol (2-OH-E2, 0-20 microM) and 4-hydroxyestradiol (4-OH-E2, 0-20 microM) increased (P less than .05) PGE and PGF2 alpha secretion by stromal cells in a dose response manner. Two-hydroxyestradiol tended (P less than .1) to decrease PGF2 alpha production by glandular cells. Two-methoxyestradiol (20 microM) suppressed (P less than .05) PGF2 alpha secretion by glandular and stromal cells. Four-methoxyestradiol (20 microM) stimulated (P less than .05) PGE production and PGE:PGF2 alpha ratio. Progesterone (.1 microM) suppressed (P less than .05) PG secretion in both cell types. We conclude that catecholestrogens, methoxyestrogens, and progesterone may participate in the establishment of pregnancy by modulating PG production in the endometrium. Topics: 2-Methoxyestradiol; Animals; Endometrium; Estradiol; Estrogens, Catechol; Female; Pregnancy; Progesterone; Prostaglandins; Swine | 1992 |