4-hydroxyestradiol and 4-hydroxyestrone

4-hydroxyestradiol has been researched along with 4-hydroxyestrone* in 15 studies

Other Studies

15 other study(ies) available for 4-hydroxyestradiol and 4-hydroxyestrone

ArticleYear
Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp. and Sphingomonas sp.
    Journal of bioscience and bioengineering, 2010, Volume: 109, Issue:6

    Five bacterial strains capable of utilizing 17beta-estradiol (E2) and estrone (E1) were isolated from soil samples. Using their morphological and physiological features and 16S rDNA sequences, we classified these isolates into two groups: Group A (Rhodococcus sp. strains ED6, ED7, and ED10) and Group B (Sphingomonas sp. strains ED8 and ED9). All isolates used E2 and E1 as the sole carbon sources and showed high E1 and E2 degradation activities. In all strains, more than 50% of 0.8 mg of E1 or E2 was degraded in 4 mL of inorganic medium over 24 h, and 90% was degraded over 120 h. By incubating the resting ED8 cells with E2 and the meta-cleavage inhibitor 3-chlorocatechol, we identified two metabolites, 4-hydroxyestrone (4-OH-E1) and 4-hydroxyestradiol (4-OH-E2), and confirmed their identity using authentic chemicals. The 4-OH-E1 and 4-OH-E2 compounds were assumed to be intermediate metabolites formed before meta-cleavage, as they were not identified in culture without 3-chlorocatechol. Degradation of E2 by strain ED8 can be initiated by hydroxylation of the C-4 position, followed by meta-cleavage of the benzene ring. When strains ED8 degraded E2, we further identified hydroxy-E2, keto-E1 and -E2, and an additional degradation product via mass spectrometry. The presence of these compounds implied degradation through a second pathway initiated through an attack of the saturated ring.

    Topics: Catechols; Estradiol; Estrogens; Estrogens, Catechol; Estrone; Hydroxyestrones; Rhodococcus; Soil Microbiology; Sphingomonas

2010
Characterization of common UGT1A8, UGT1A9, and UGT2B7 variants with different capacities to inactivate mutagenic 4-hydroxylated metabolites of estradiol and estrone.
    Cancer research, 2006, Jan-01, Volume: 66, Issue:1

    The oxidative metabolism of estrone (E1) and estradiol (E2) to form carcinogenic 4-hydroxy-catecholestrogens (4-OHCE) is associated with uterine and breast carcinogenesis. In this study, we conducted functional analyses of genetic variants in the UDP-glucuronosyltransferase UGT1A8, UGT1A9, and UGT2B7 enzymes primarily involved in the inactivation of 4-OHCEs. Compared with UGT2B7*2 (H268Y), UGT2B7*1 exhibited a 2-fold lower efficiency (intrinsic clearance) at conjugating 4-hydroxyestrone and 4-hydroxyestradiol at positions 3 and 4 caused by altered capacities (Vmax) and affinities (Km). The -79 G>A promoter variation, characterizing the UGT2B7*2g haplotype, leads to a 50% reduction of transcription (P < 0.001) in human endometrial carcinoma-1B cells. Furthermore, a >12-fold decreased intrinsic clearance of the *1 proteins was induced by selected amino acid substitutions in UGT1A8 (*3 C277Y) and UGT1A9 (*3 M33T). Frequencies of the low-activity alleles in Caucasians were 45% for UGT2B7*1, 5% for the -79A promoter variant, 1.2% for UGT1A8*3, and 2.2% for UGT1A9*3. Supporting a protective role in two organs sensitive to 4-OHCE-induced damages, the expression of UGT enzymes was shown by immunohistochemistry in normal breast and endometrial tissues and confirmed by Western blotting in a subset of samples. Altogether, findings suggest that specific polymorphisms in UGT genes may modulate the exposure to carcinogenic metabolites of E2 and potentially lead to an altered risk of breast and endometrial cancers in women carrying the variant alleles.

    Topics: Biotransformation; Breast; Cell Line, Tumor; Codon; Estradiol; Estrogens, Catechol; Estrone; Female; Glucuronosyltransferase; Humans; Hydroxyestrones; Hydroxylation; Isoenzymes; Kinetics; Linkage Disequilibrium; Uterus

2006
Potential biomarker for early risk assessment of prostate cancer.
    The Prostate, 2006, Oct-01, Volume: 66, Issue:14

    Catechol estrogen quinones (CEQ) derived from 4-hydroxyestrone (4-OHE1) and 4-hydroxyestradiol (4-OHE2) react with DNA to form depurinating--N7Gua and--N3Ade adducts. This damage leads to mutations that can initiate breast and prostate cancer. To determine whether this damage occurs in humans, urine samples from men with prostate cancer and benign urological conditions, and healthy controls were analyzed. The objective was determining whether any of the cancer patients had formed the depurinating 4-OHE1(E2)-1-N3Ade adducts.. The adducts were extracted from samples by using affinity columns equipped with a monoclonal antibody developed for detecting 4-OHE1(E2)-1-N3Ade adducts. Eluted extracts were separated by capillary electrophoresis with field-amplified sample stacking and/or ultraperformance liquid chromatography. Absorption/luminescence spectroscopies and mass spectrometry were used to identify the adducts.. 4-OHE1-1-N3Ade was detected at higher levels in samples from subjects with prostate cancer (n = 7) and benign urological conditions (n = 4) compared to healthy males (n = 5).. This is the first demonstration that CEQ-derived DNA adducts are present in urine samples from subjects with prostate cancer.

    Topics: Antibodies, Monoclonal; Biomarkers, Tumor; DNA Adducts; Early Diagnosis; Electrophoresis, Capillary; Estradiol; Estrogens, Catechol; Humans; Hydroxyestrones; Male; Prostatic Neoplasms; Risk Factors

2006
Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.
    Biochemistry, 2004, Jun-01, Volume: 43, Issue:21

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

    Topics: Animals; Aromatase; Binding, Competitive; Estradiol; Estrogen Antagonists; Estrogen Receptor alpha; Estrogens, Catechol; Female; Fulvestrant; Hydroxyestrones; Kidney; Liver; Male; Mice; Mice, Knockout; Ovary; Proteins; Receptors, Estrogen; Substrate Specificity; Tissue Distribution; Uterus

2004
The effects of steroidal estrogens in ACI rat mammary carcinogenesis: 17beta-estradiol, 2-hydroxyestradiol, 4-hydroxyestradiol, 16alpha-hydroxyestradiol, and 4-hydroxyestrone.
    The Journal of endocrinology, 2004, Volume: 183, Issue:1

    Several investigators have suggested that certain hydroxylated metabolites of 17beta-estradiol (E2) are the proximate carcinogens that induce mammary carcinomas in estrogen-sensitive rodent models. The studies reported here were designed to examine the carcinogenic potential of different levels of E2 and the effects of genotoxic metabolites of E2 in an in vivo model sensitive to E2-induced mammary cancer. The potential induction of mammary tumors was determined in female ACI rats subcutaneously implanted with cholesterol pellets containing E2 (1, 2, or 3 mg), or 2-hydroxyestradiol (2-OH E2), 4-hydroxyestradiol (4-OH E2), 16alpha-hydroxyestradiol (16alpha-OH E2), or 4-hydoxyestrone (4-OH E1) (equimolar to 2 mg E2). Treatment with 1, 2, or 3 mg E2 resulted in the first appearance of a mammary tumor between 12 and 17 weeks, and a 50% incidence of mammary tumors was observed at 36, 19, and 18 weeks respectively. The final cumulative mammary tumor incidence in rats treated with 1, 2, or 3 mg E2 for 36 weeks was 50%, 73%, and 100% respectively. Treatment of rats with pellets containing 2-OH E2, 4-OH E2, 16alpha-OH E2, or 4-OH E1 did not induce any detectable mammary tumors. The serum levels of E2 in rats treated with a 1 or 3 mg E2 pellet for 12 weeks was increased 2- to 6-fold above control values (approximately 30 pg/ml). Treatment of rats with E2 enhanced the hepatic microsomal metabolism of E2 to E1, but did not influence the 2- or 4-hydroxylation of E2). In summary, we observed a dose-dependent induction of mammary tumors in female ACI rats treated continuously with E2; however, under these conditions 2-OH E2, 4-OH E2, 16alpha-OH E2, and 4-OH E1 were inactive in inducing mammary tumors.

    Topics: Animals; Carcinoma in Situ; Carcinoma, Ductal, Breast; Dose-Response Relationship, Drug; Drug Implants; Estradiol; Estriol; Estrogens; Estrogens, Catechol; Female; Hydroxyestrones; Mammary Neoplasms, Experimental; Rats; Rats, Inbred ACI

2004
In vitro generation of peroxynitrite by 2- and 4-hydroxyestrogens in the presence of nitric oxide.
    Chemical research in toxicology, 2001, Volume: 14, Issue:5

    Estrogen metabolism is altered in most, if not all, breast cancer tumors. These alterations primarily lead to the formation of the catechol estrogen metabolites, 2- and 4-hydroxyestrogens, which can generate superoxide anion radicals (O(2)(*)(-)) through the redox cycling of semiquinone/quinone derivatives. In breast cancer cells, the activity of nitric oxide synthase is also frequently elevated, resulting in an increased level of exposure to nitric oxide ((*)NO). Since (*)NO rapidly reacts with O(2)(*)(-) to produce the peroxynitrite anion (ONOO(-)), this study was undertaken to determine whether ONOO(-) can be generated when 2- and 4-hydroxyestrogens are incubated in vitro with (*)NO donor compounds. Using dihydrorhodamine 123 as a specific probe for ONOO(-) formation, a ratio of 100 microM dipropylenetriamine NONOate (DPTA/NO) to 10 microM 4-hydroxyestradiol (4-OHE(2)) gave an optimal ONOO(-) production of 11.9 +/- 1.9 microM (mean +/- SD). Quantification of ONOO(-) was not modified by mannitol, supporting the idea that the hydroxyl radical was not involved. This production of ONOO(-) required the presence of the catechol structure of estrogen metabolites since all methoxyestrogens that were tested were inactive. Hydroxyestrogen metabolites derived from estradiol showed the same efficiency in producing ONOO(-) as those originating from estrone. With DPTA/NO, the 4-hydroxyestrogens generated 30-40% more ONOO(-) than the 2-hydroxyestrogens. Optimal production of ONOO(-) was assessed with DPTA/NO and diethylenetriamine NONOate (initial (*)NO generation rates of 0.76 and 0.08 microM min(-1), respectively). With faster (*)NO-releasing compounds, such as diethylamine NONOate and spermine NONOate, lower levels of ONOO(-) were detected. These data suggest that once the optimal concentration of (*)NO was obtained, the reaction between (*)NO and 4-OHE(2) was saturated. The excess of (*)NO would probably react with aqueous oxygen to form nitrite (NO(2)(-)). Since the third-order reaction rate for the reaction between 2(*)NO and O(2) is 2 x 10(6) M(-2) s(-1), it can therefore be suggested that the reaction between (*)NO and 4-OHE(2) occurs at a faster rate.

    Topics: Chromatography, High Pressure Liquid; Estradiol; Estrogens, Catechol; Hydroxyestrones; Mass Spectrometry; Nitrates; Nitric Oxide

2001
The ability of four catechol estrogens of 17beta-estradiol and estrone to induce DNA adducts in Syrian hamster embryo fibroblasts.
    Carcinogenesis, 2001, Volume: 22, Issue:9

    Catechol estrogens are considered critical intermediates in estrogen-induced carcinogenesis. We demonstrated previously that 17beta-estradiol (E(2)), estrone (E(1)) and four of their catechol estrogens, 2- and 4-hydroxyestradiols (2- and 4-OHE(2)), and 2- and 4-hydroxyestrones (2- and 4-OHE(1)) induce morphological transformation in Syrian hamster embryo (SHE) fibroblasts, and the transforming abilities vary as follows: 4-OHE(1) > 2-OHE(1) > 4-OHE(2) > 2-OHE(2) vertical line E(2), E(1). To examine the involvement of catechol estrogens in the initiation of hormonal carcinogenesis, we studied the ability of E(2), E(1) and their catechol estrogens to induce DNA adducts in SHE cells by using a (32)P-post-labeling assay. DNA adducts were detected in cells treated with each of all the catechol estrogens at concentrations of 10 microg/ml for 1 h and more. 2- or 4-OHE(2) formed a single DNA adduct, which was chromatographically distinct from each other. In contrast, 2- or 4-OHE(1) produced one major and one minor adduct, and the two adducts formed by each catechol estrogen exhibited identical mobilities on the chromatograms. Neither E(2) nor E(1) at concentrations up to 30 microg/ml induced DNA adducts. The abilities of the estrogens to induce DNA adducts were ranked as follows: 4-OHE(1) > 2-OHE(1) > 4-OHE(2) > 2-OHE(2) > > E(2), E(1), which corresponds well to the transforming and carcinogenic abilities of the estrogens. In addition, the level of DNA adducts induced by the catechol estrogens was markedly decreased by co-treatment of cells with the antioxidant L-ascorbic acid. The results indicate the possible involvement of oxidative metabolites of catechol estrogens of E(2) and E(1) in the initiation of endogenous estrogen-induced carcinogenesis.

    Topics: Animals; Antioxidants; Ascorbic Acid; Cell Survival; Cell Transformation, Neoplastic; Cricetinae; DNA Adducts; Estradiol; Estrogens, Catechol; Fibroblasts; Hydroxyestrones; Mesocricetus

2001
Menstrual cycle effects on urinary estrogen metabolites.
    The Journal of clinical endocrinology and metabolism, 1999, Volume: 84, Issue:11

    Endogenous estrogen metabolism may play an important role in the pathogenesis of hormone-related cancers, most notably breast cancer. Despite the importance of estrogen metabolism, little is known about estrogen metabolite profiles during different phases of the menstrual cycle. This study was performed to evaluate the effects of the menstrual cycle on endogenous estrogen metabolism. Twenty-four-hour urine samples were collected daily during 4 precisely defined phases of the menstrual cycle (early follicular, midfollicular, periovulatory, and midluteal phases) from 6 healthy premenopausal women. Urine samples were analyzed for 15 endogenous estrogens and their metabolites by an ion exchange chromatography and the capillary gas chromatography-mass spectrometry method. The patterns of urinary estrogen metabolites (including potentially genotoxic 16alpha-hydroxyestrone, 4-hydroxyestradiol, and 4-hydroxyestrone) followed those of plasma estradiol and estrone, showing significant increases in the periovulatory and midluteal phases. Compared to the early and midfollicular phases, the ratios of 2-hydroxyestrogens/16alpha-hydroxyestrogens and 2-hydroxyestrogens/4-hydroxyestrogens were significantly increased during the periovulatory and midluteal phases (by 28% and 72%, respectively; P < 0.05), suggesting that estrogen metabolism is significantly affected by menstrual cycle phase. These data indicate that menstrual cycle phase must be considered in studies of estrogen metabolism in premenopausal women.

    Topics: Adult; Body Weight; Diet; Estradiol; Estrogens; Estrogens, Catechol; Estrone; Female; Follicular Phase; Gas Chromatography-Mass Spectrometry; Humans; Hydroxyestrones; Luteal Phase; Menstruation; Ovulation

1999
Glucuronidation of catechol estrogens by expressed human UDP-glucuronosyltransferases (UGTs) 1A1, 1A3, and 2B7.
    Toxicological sciences : an official journal of the Society of Toxicology, 1998, Volume: 45, Issue:1

    Catechol estrogens are major estrogen metabolites in mammals and are the most potent naturally occurring inhibitors of catecholamine metabolism. These estrogen compounds have been implicated in carcinogenic activity and the 4/2-hydroxyestradiol concentration has been shown to be elevated in neoplastic human mammary tissue compared to normal human breast tissue. Three human liver UDP-glucuronosyltransferases, UGT2B7, UGT1A1, and UGT1A3, have been shown to catalyze the glucuronidation of catechol estrogens and lead to their enhanced elimination via urine or bile. The present study was designed to study the kinetic interaction of expressed human UGT2B7(Y) or (H), UGT1A1, and UGT1A3 toward 2- and 4-hydroxycatechol estrogens. cDNAs encoding UGT2B7(Y) or (H), UGT1A1, and UGT1A3 were expressed in HK293 cells, and cell homogenates or membrane preparations were used to determine their glucuronidation ability. UGT2B7(Y) reacted with higher efficiency toward 4-hydroxyestrogenic catechols, whereas UGT1A1 and UGT1A3 showed higher activities toward 2-hydroxyestrogens. UGT2B7(H) catalyzed estrogen catechol glucuronidation with efficiencies similar to UGT2B7(Y). Flunitrazepam (FNZ), a competitive inhibitor of morphine glucuronidation in hepatic microsomes, competitively inhibited catechol estrogen glucuronidation catalyzed by UGT2B7(Y), UGT1A1, and UGT1A3. Buprenorphine, an opioid substrate that reacts at high efficiency with each of these UGTs, was also studied. FNZ competitively inhibited buprenorphine glucuronidation with UGT1A1 and UGT2B7 but had no inhibitory activity toward UGT1A3. This suggests that buprenorphine and 2-hydroxycatechol estrogens react with separate active sites of UGT1A3. A catecholamine, norepinephrine, did not inhibit UGT2B7(Y)-, UGT1A1-, and UGT1A3-catalyzed glucuronidation of catechol estrogens. These results also suggest that drug-endobiotic interactions are possible in humans and may have implication in carcinogenesis.

    Topics: Estradiol; Estrogens, Catechol; Flunitrazepam; Glucuronates; Glucuronosyltransferase; Humans; Hydroxyestrones; Isoenzymes; Norepinephrine

1998
Microsome-mediated 8-hydroxylation of guanine bases of DNA by steroid estrogens: correlation of DNA damage by free radicals with metabolic activation to quinones.
    Carcinogenesis, 1995, Volume: 16, Issue:10

    Free radical generation by metabolic redox cycling between catechol estrogens and their quinones and subsequent hydroxyl radical damage to DNA have been proposed to mediate estrogen-induced renal carcinogenesis in the hamster. In this study the content of 8-hydroxy-2'-deoxy-guanosine (8-OHdG), a marker product of hydroxyl radical action, was examined in DNA incubated with a liver microsomal activating system and with catechol estrogens, equilenin-3,4-quinone or with parent estrogens. Equilenin-3,4-quinone increased the formation of 8-OHdG by 50% over control levels. 4-Hydroxyestrone and 4-hydroxy-estradiol raised 8-OHdG contents significantly, to 1.61 +/- 0.79 and 1.27 +/- 0.31 8-OHdG/10(5) deoxyguanosine (dG) respectively over controls (0.68 +/- 0.25 8-OHdG/10(5) dG). The corresponding 2-hydroxylated estrogens and the parent hormones estrone, estradiol and equilenin did not affect 8-hydroxylation of guanine bases of DNA. In incubations of catechol estrogens with microsomes and cumene hydroperoxide the 4-hydroxyestrogens were oxidized to quinones more rapidly than the 2-hydroxyestrogens. Our data support a mechanism of hydroxyl radical generation from estrogens by redox cycling between 4-hydroxylated metabolites and their quinones. The rapid oxidation of 4-hydroxylated estrogens to quinones, their redox cycling and hydroxyl radical damage to DNA is consistent with the previously reported carcinogenic activities of 4-hydroxylated, but not of 2-hydroxylated, catechol estrogens.

    Topics: Animals; Biotransformation; Cricetinae; DNA; DNA Damage; Equilenin; Estradiol; Estrogens, Catechol; Estrone; Free Radicals; Guanine; Hydroxyestrones; Hydroxylation; Liver; Male; Mesocricetus; Microsomes, Liver; Quinones

1995
Separation of steroidal estrogens and their major unconjugated metabolites by high performance liquid chromatography.
    Journal of steroid biochemistry, 1982, Volume: 16, Issue:3

    A high performance liquid chromatographic method is described for the rapid, non-destructive separation of a number of physiologically important steroidal estrogens, including the labile catechol estrogens. This procedures uses a "Diol" column and gradient elution to separate in a single run, estrogens ranging from 2-methoxy estrone, one of the least polar C18 steroids, to estriol, one of the most polar. Simpler, isocratic conditions, are provided for the separation of estrogens of similar polarity. A semi-preparative column of similar composition was used for the purification of samples containing 25 to 50 mg of individual steroids.

    Topics: Chromatography, High Pressure Liquid; Estradiol; Estrogens; Estrogens, Catechol; Hydroxyestrones

1982
A comparison of the effects of 4-catechol oestrogens and 2-pyrogallol oestrogens on prostaglandin synthesis by the rat and human uterus.
    Journal of steroid biochemistry, 1981, Volume: 14, Issue:8

    Topics: 6-Ketoprostaglandin F1 alpha; Animals; Estradiol; Estrogens, Catechol; Estrone; Female; Humans; Hydroxyestrones; Prostaglandins; Prostaglandins E; Prostaglandins F; Rats; Uterus

1981
4-hydroxyestrone, isolation and identification in human urine.
    Steroids, 1980, Volume: 36, Issue:1

    Portions of pregnancy and midcycle urines were submitted to hot acid hydrolysis, extracted with benzene/ethyl acetate and the extracts washed with ascorbic acid buffer. From the remaining organic phase the catecholestrogens were removed with borate buffer and further purified on Sephadex LH-20 columns. After derivatisation 4-hydroxyestrone was separated from the isomeric 2-hydroxyestrone peak were identical with that of authentic 4-hydroxyestrone. After treatment of the extracts with sodium borohydride 4-hydroxyestradiol-17 beta was identified by GC-MS. By the addition of trace amounts of tritiated 4-hydroxyestrone a recovery of 40% was calculated. On the basis of this recovery and the peak heights of the gas chromatograms an excretion of 4 microgram (midcycle) and 40 microgram (pregnancy) of 4-hydroxyestrone/24 h was estimated.

    Topics: Chromatography, Ion Exchange; Estradiol; Estrogens, Catechol; Estrone; Female; Humans; Hydroxyestrones; Pregnancy; Spectrum Analysis

1980
Specific antibodies for radioimmunoassay of 4-hydroxyestrogens and their characterization by 125I-labelled indicator haptens.
    Hoppe-Seyler's Zeitschrift fur physiologische Chemie, 1980, Volume: 361, Issue:11

    Topics: Animals; Antibody Formation; Cross Reactions; Estradiol; Estrogens; Estrogens, Catechol; Estrone; Haptens; Hydroxyestrones; Rabbits; Radioimmunoassay

1980
Formation of 2- and 4-hydroxyestrogens by brain, pituitary, and liver of the human fetus.
    The Journal of clinical endocrinology and metabolism, 1978, Volume: 47, Issue:4

    When [6,7-3H]estradiol was incubated with tissue homogenates of the brain, the pituitary, and the liver of two human female fetuses, a number of radioactive metabolites more "polar" than the incubated substrate were detected. Among these, the identification of two types of catecholestrogens, i.e. the 2- and 4-hydroxyestrogens, was of major interest. Compared on the basis of wet weight of tissues (250 mg), the conversion of estradiol to 2-hydroxyestrogens (2-hydroxyestradiol and 2-hydroxyestrone) was 0.8% in the frontal cortex, 1.0% in the hypothalamus, 2.1% in the pituitary, and 7.8% in the liver. For the first time, the formation of 4-hydroxyestrogens was demonstrated. The percentages of incubated estradiol hydroxylated at C-atom 4 (4-hydroxyestradiol and 4-hydroxyestrone) were 0.5 in the cortex, 0.4% in the hypothalamus, .1% in the pituitary, and 0.5% in the liver. The results show that fetal brain and pituitary tissue can hydroxylate estradiol in positions 2 and 4 to a similar extent, whereas in the liver, about 15 times more 2-hydroxy than 4-hydroxy compounds are formed. Moreover, the 2-hydroxylating capacity of the liver is definitely greater than that of the brain, whereas the 4-hydroxylating capacity is about the same as that of the brain.

    Topics: Brain; Estradiol; Estrogens, Catechol; Female; Humans; Hydroxyestrones; Hydroxylation; Liver; Pituitary Gland

1978