4-hydroxydodeca-2-6-dienal has been researched along with 4-hydroxy-2-hexenal* in 2 studies
1 review(s) available for 4-hydroxydodeca-2-6-dienal and 4-hydroxy-2-hexenal
Article | Year |
---|---|
Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds.
The process of lipid oxidation generates a diverse array of small aldehydes and carbonyl-containing compounds, which may occur in free form or esterified within phospholipids and cholesterol esters. These aldehydes mostly result from fragmentation of fatty acyl chains following radical oxidation, and the products can be subdivided into alkanals, alkenals (usually α,β-unsaturated), γ-substituted alkenals and bis-aldehydes. Isolevuglandins are non-fragmented di-carbonyl compounds derived from H Topics: Acrolein; Aldehydes; Animals; Humans; Isoprostanes; Lactoglobulins; Lipid Peroxidation; Oxidative Stress; Protein Processing, Post-Translational | 2017 |
1 other study(ies) available for 4-hydroxydodeca-2-6-dienal and 4-hydroxy-2-hexenal
Article | Year |
---|---|
Covalent binding of hydroxy-alkenals 4-HDDE, 4-HHE, and 4-HNE to ethanolamine phospholipid subclasses.
Lipid oxidation is implicated in a wide range of pathophysiogical disorders, and leads to reactive compounds such as fatty aldehydes, of which the most well known is 4-hydroxy-2E-nonenal (4-HNE) issued from 15-hydroperoxyeicosatetraenoic acid (15-HpETE), an arachidonic acid (AA) product. In addition to 15-HpETE, 12(S)-HpETE is synthesized by 12-lipoxygenation of platelet AA. We first show that 12-HpETE can be degraded in vitro into 4-hydroxydodeca-(2E,6Z)-dienal (4-HDDE), a specific aldehyde homologous to 4-HNE. Moreover, 4-HDDE can be detected in human plasma. Second, we compare the ability of 4-HNE, 4-HDDE, and 4-hydroxy-2E-hexenal (4-HHE) from n-3 fatty acids to covalently modify different ethanolamine phospholipids (PEs) chosen for their biological relevance, namely AA- (20: 4n-6) or docosahexaenoic acid- (22:6n-3) containing diacyl-glycerophosphoethanolamine (diacyl-GPE) and alkenylacyl-glycerophosphoethanolamine (alkenylacyl-GPE) molecular species. The most hydrophobic aldehyde used, 4-HDDE, generates more adducts with the PE subclasses than does 4-HNE, which itself appears more reactive than 4-HHE. Moreover, the aldehydes show higher reactivity toward alkenylacyl-GPE compared with diacyl-GPE, because the docosahexaenoyl-containing species are more reactive than those containing arachidonoyl. We conclude that the different PE species are differently targeted by fatty aldehydes: the higher their hydrophobicity, the higher the amount of adducts made. In addition to their antioxidant potential, alkenylacyl-GPEs may efficiently scavenge fatty aldehydes. Topics: Aldehydes; Animals; Binding Sites; Brain; Chromatography, High Pressure Liquid; Eicosapentaenoic Acid; Gas Chromatography-Mass Spectrometry; Humans; Phosphatidylethanolamines; Phospholipids; Rats; Time Factors | 2003 |