4-hydroxybenzaldehyde has been researched along with phenol in 8 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 4 (50.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (25.00) | 29.6817 |
2010's | 2 (25.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Fujita, T; Nakajima, M; Nishioka, T | 1 |
Dunn, WJ; Grigoras, S; Koehler, MG | 1 |
Hachisuka, Y; Ikeda, K; Tochikubo, K; Tomida, H; Yasuda, Y | 1 |
Kapur, S; Rosario, M; Selassie, CD; Verma, RP | 1 |
Abellán Guillén, A; Cordeiro, MN; Garrido Escudero, A; Morales Helguera, A; Pérez-Garrido, A | 1 |
Alam, MA; Alam, MI; Alam, O; Koul, S; Nargotra, A; Taneja, SC | 1 |
CHAMBERS, CW; KABLER, PW; TABAK, HH | 1 |
Geng, A; Li, Q; Lu, Y; Yao, C; Zhang, J | 1 |
8 other study(ies) available for 4-hydroxybenzaldehyde and phenol
Article | Year |
---|---|
Hydrogen-bonding parameter and its significance in quantitative structure--activity studies.
Topics: Acetylcholinesterase; Anesthetics; Benzene Derivatives; Benzenesulfonates; Carbamates; Chemical Phenomena; Chemistry; Chemistry, Physical; Hydrogen Bonding; Models, Biological; Models, Chemical; Phenoxyacetates; Solubility; Structure-Activity Relationship | 1977 |
The role of solvent-accessible surface area in determining partition coefficients.
Topics: Diffusion; Solubility; Solvents; Structure-Activity Relationship | 1987 |
Quantitative structure-inhibitory activity relationships of phenols and fatty acids for Bacillus subtilis spore germination.
Topics: Alanine; Bacillus subtilis; Fatty Acids; Hydrogen-Ion Concentration; Kinetics; Phenols; Spores, Bacterial; Structure-Activity Relationship | 1982 |
Cellular apoptosis and cytotoxicity of phenolic compounds: a quantitative structure-activity relationship study.
Topics: Animals; Antineoplastic Agents; Apoptosis; Caspases; Cell Line, Tumor; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Enzyme Activation; Mice; Molecular Conformation; Phenols; Quantitative Structure-Activity Relationship; Vinblastine | 2005 |
Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.
Topics: beta-Cyclodextrins; Hydrophobic and Hydrophilic Interactions; Organic Chemicals; Quantitative Structure-Activity Relationship | 2009 |
Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship.
Topics: Antivenins; Biological Products; Dose-Response Relationship, Drug; Models, Molecular; Molecular Structure; Phenols; Phospholipase A2 Inhibitors; Phospholipases A2; Plant Extracts; Plant Roots; Snake Venoms; Structure-Activity Relationship | 2016 |
MICROBIAL METABOLISM OF AROMATIC COMPOUNDS. I. DECOMPOSITION OF PHENOLIC COMPOUNDS AND AROMATIC HYDROCARBONS BY PHENOL-ADAPTED BACTERIA.
Topics: Bacteria; Benzaldehydes; Benzoates; Chlorophenols; Cresols; Hydrocarbons; Hydroxybenzoates; Manometry; Metabolism; Nitrophenols; Phenol; Phenols; Research; Soil Microbiology | 1964 |
Effects of lignin-derived phenolic compounds on xylitol production and key enzyme activities by a xylose utilizing yeast Candida athensensis SB18.
Topics: Benzaldehydes; Biotechnology; Candida; Chromatography, High Pressure Liquid; Fermentation; Lignin; Phenol; Phenols; Regression Analysis; Singapore; Xylitol; Xylose | 2012 |