4-hydroxy-2-nonenal has been researched along with pimagedine* in 9 studies
9 other study(ies) available for 4-hydroxy-2-nonenal and pimagedine
Article | Year |
---|---|
Reactivity, Selectivity, and Reaction Mechanisms of Aminoguanidine, Hydralazine, Pyridoxamine, and Carnosine as Sequestering Agents of Reactive Carbonyl Species: A Comparative Study.
Reactive carbonyl species (RCS) are endogenous or exogenous byproducts involved in the pathogenic mechanisms of different oxidative-based disorders. Detoxification of RCS by carbonyl quenchers is a promising therapeutic strategy. Among the most studied quenchers are aminoguanidine, hydralazine, pyridoxamine, and carnosine; their quenching activity towards four RCS (4-hydroxy-trans-2-nonenal, methylglyoxal, glyoxal, and malondialdehyde) was herein analyzed and compared. Their ability to prevent protein carbonylation was evaluated in vitro by using an innovative method based on high-resolution mass spectrometry (HRMS). The reactivity of the compounds was RCS dependent: carnosine efficiently quenched 4-hydroxy-trans-2-nonenal, pyridoxamine was particularly active towards malondialdehyde, aminoguanidine was active towards methylglyoxal and glyoxal, and hydralazine efficiently quenched all RCS. Reaction products were generated in vitro and were characterized by HRMS. Molecular modeling studies revealed that the reactivity was controlled by specific stereoelectronic parameters that could be used for the rational design of improved carbonyl quenchers. Topics: Aldehydes; Carnosine; Dose-Response Relationship, Drug; Glyoxal; Guanidines; Humans; Hydralazine; Malondialdehyde; Molecular Structure; Pyridoxamine; Pyruvaldehyde; Sequestering Agents; Structure-Activity Relationship | 2016 |
Malondialdehyde and 4-hydroxynonenal adducts are not formed on cardiac ryanodine receptor (RyR2) and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) in diabetes.
Recently, we reported an elevated level of glucose-generated carbonyl adducts on cardiac ryanodine receptor (RyR2) and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2) in hearts of streptozotocin(STZ)-induced diabetic rats. We also showed these adduct impaired RyR2 and SERCA2 activities, and altered evoked Ca(2+) transients. What is less clear is if lipid-derived malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) also chemically react with and impair RyR2 and SERCA2 activities in diabetes? This study used western blot assays with adduct-specific antibodies and confocal microscopy to assess levels of MDA, 4-HNE, N (ε)-carboxy(methyl)lysine (CML), pentosidine, and pyrraline adducts on RyR2 and SERCA2 and evoked intracellular transient Ca(2+) kinetics in myocytes from control, diabetic, and treated-diabetic rats. MDA and 4-HNE adducts were not detected on RyR2 and SERCA2 from either control or 8 weeks diabetic rats with altered evoked Ca(2+) transients. However, CML, pentosidine, and pyrraline adducts were elevated three- to five-fold (p < 0.05). Treating diabetic rats with pyridoxamine (a scavenger of reactive carbonyl species, RCS) or aminoguanidine (a mixed reactive oxygen species-RCS scavenger) reduced CML, pentosidine, and pyrraline adducts on RyR2 and SERCA2 and blunted SR Ca(2+) cycling changes. Treating diabetic rats with the superoxide dismutase mimetic tempol had no impact on MDA and 4-HNE adducts on RyR2 and SERCA2, and on SR Ca(2+) cycling. From these data we conclude that lipid-derived MDA and 4-HNE adducts are not formed on RyR2 and SERCA2 in this model of diabetes, and are therefore unlikely to be directly contributing to the SR Ca(2+) dysregulation. Topics: Aldehydes; Animals; Arginine; Calcium; Cyclic N-Oxides; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Echocardiography; Guanidines; Lysine; Male; Malondialdehyde; Myocytes, Cardiac; Norleucine; Protein Carbonylation; Pyridoxamine; Pyrroles; Rats; Rats, Sprague-Dawley; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Spin Labels | 2013 |
Diabetes depresses synaptic transmission in sympathetic ganglia by inactivating nAChRs through a conserved intracellular cysteine residue.
Most people with diabetes develop severe complications of the autonomic nervous system; yet, the underlying causes of many diabetic-induced dysautonomias are poorly understood. Here we explore the idea that these dysautonomias results, in part, from a defect in synaptic transmission. To test this idea, we investigated cultured sympathetic neurons and show that hyperglycemia inactivates nAChRs through a mechanism involving an elevation in reactive oxygen species and an interaction with highly conserved cysteine residues located near the intracellular mouth of the nAChR channel. Consistent with this, we show that diabetic mice have depressed ganglionic transmission and reduced sympathetic reflexes, whereas diabetic mice expressing mutant postsynaptic nAChRs that lack the conserved cysteine residues on the alpha3 subunit have normal synaptic transmission in sympathetic ganglia and normal sympathetic reflexes. Our work suggests a new model for diabetic-induced dysautonomias and identifies ganglionic nAChRs as targets of hyperglycemia-induced downstream signals. Topics: Acetylcholine; Adenoviridae; Age Factors; Aldehydes; Animals; Animals, Newborn; Body Temperature; Cells, Cultured; Cysteine; Diabetes Mellitus, Experimental; Disease Models, Animal; Enzyme Inhibitors; Excitatory Postsynaptic Potentials; Glucose; Guanidines; Heart Rate; Hypoglycemic Agents; Insulin; Leptin; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mutation; Oxidative Stress; Patch-Clamp Techniques; Reactive Oxygen Species; Receptors, Leptin; Receptors, Nicotinic; Sensory Receptor Cells; Superior Cervical Ganglion; Synaptic Transmission | 2010 |
Influence of pyridoxylidene aminoguanidine on biomarkers of the oxidative stress and selected metabolic parameters of rats with diabetes mellitus.
Oxidative damage is considered to play an important role in the pathogenesis of several diseases, such as diabetes mellitus (DM), atherosclerosis, cardiovascular complications and chronic renal failure. DM is associated with the oxidative stress and formation of advanced glycation end products (AGEs). Different drugs inhibit oxidative stress and formation of advanced glycation end products. Aminoguanidine (AG) has been proposed as a drug of potential benefit in prophylaxis of the complications of DM. Recent reports show a pro-oxidant activity of AG. Therefore we examined the effect of structural analogue of AG, its Schiff base with pyridoxal-pyridoxylidene aminoguanidine (PAG) on the level of selected markers of oxidative stress. We found that PAG decreased total damage to DNA in controls as well as in diabetic group of rats. However, we also found that PAG supplementation increases susceptibility of lipoproteins to oxidation and formation of conjugated dienes in both, diabetic as well as control animals. Its administration to diabetic rats decreases antioxidant capacity of plasma. Therefore, it is necessary to search for other structural modifications of AG that would combine its higher anti-diabetic activity with less toxicity. Topics: Aldehydes; Animals; Antioxidants; Biomarkers; Diabetes Mellitus; DNA Damage; Guanidines; Lipoproteins; Male; Malondialdehyde; Oxidation-Reduction; Oxidative Stress; Pyridoxal; Rats; Rats, Wistar; Solubility; Water | 2009 |
Carnosine inhibits (E)-4-hydroxy-2-nonenal-induced protein cross-linking: structural characterization of carnosine-HNE adducts.
(E)-4-Hydroxy-2-nonenal (HNE) is a highly cytotoxic aldehyde generated during peroxidation of lipids, which induces modification and aggregation of low-density lipoproteins and has been found to elicit covalent cross-linking of proteins. Carnosine was previously shown to trap HNE. Results presented here provide evidence that by trapping HNE in stable covalent adducts, carnosine can inhibit HNE-induced protein cross-linking. This trapping effect may be augmented by carnosine-chelating trace transition metal ions that promote oxidative HNE-induced cross-linking. Adducts formed in the reaction of HNE with carnosine have been isolated and structurally characterized. The main carnosine-HNE adduct is shown to be a 13-member cyclic adduct formed through initial Schiff base formation followed by conjugate addition of the imidazole group. Topics: Aldehydes; Animals; Carnosine; Cattle; Chelating Agents; Copper Sulfate; Cross-Linking Reagents; Guanidines; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Pancreas; Pentetic Acid; Ribonuclease, Pancreatic | 2003 |
An investigation into the mechanisms mediating plasma lipoprotein-potentiated beta-amyloid fibrillogenesis.
The toxicity of the beta-amyloid (Abeta) peptide of Alzheimer's disease may relate to its polymerisation state (i.e. fibril content). We have shown previously that plasma lipoproteins, particularly when oxidised, greatly enhance Abeta polymerisation. In the present study the nature of the interactions between both native and oxidised lipoproteins and Abeta1-40 was investigated employing various chemical treatments. The addition of ascorbic acid or the vitamin E analogue, trolox, to lipoprotein/Abeta coincubations failed to inhibit Abeta fibrillogenesis, as did the treatment of lipoproteins with the aldehyde reductant, sodium borohydride. The putative lipid peroxide-derived aldehyde scavenger, aminoguanidine, however, inhibited Abeta-oxidised lipoprotein-potentiated polymerisation, but in a manner consistent with an antioxidant action for the drug. Lipoprotein treatment with the reactive aldehyde 4-hydroxy-2-trans-nonenal enhanced Abeta polymerisation in a concentration-dependent fashion. Incubation of Abeta with lipoprotein fractions from which the apoprotein components had been removed resulted in extents of polymerisation comparable to those observed with Abeta alone. These data indicate that the apoprotein components of plasma lipoproteins play a key role in promoting Abeta polymerisation, possibly via interactions with aldehydes. Topics: Aldehydes; Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Apolipoproteins; Ascorbic Acid; Biopolymers; Borohydrides; Chromans; Guanidines; Humans; Kinetics; Lipoproteins; Oxidation-Reduction; Peptide Fragments | 2002 |
Mechanism of the inhibitory effect of OPB-9195 [(+/-)-2-isopropylidenehydrazono-4-oxo-thiazolidin-5-yla cetanilide] on advanced glycation end product and advanced lipoxidation end product formation.
The accumulation in uremic plasma of reactive carbonyl compounds (RCO) derived from both carbohydrates and lipids ("carbonyl stress") contributes to uremic toxicity by accelerating the advanced glycation and lipoxidation of proteins. It was previously demonstrated that OPB-9195 [(+/-)-2-isopropylidenehydrazono-4-oxo- thiazolidin-5-ylacetanilide] inhibited the in vitro formation of advanced glycation end products (AGE) in uremic plasma. This study was designed to elucidate the mechanism of action of OPB-9195 by further delineating the AGE and advanced lipoxidation end product (ALE) precursors targeted by this drug. The inhibitory effects of OPB-9195 on the formation of two AGE (N:epsilon-carboxymethyllysine and pentosidine) on bovine serum albumin incubated with various AGE precursors were examined. Inhibition of N:epsilon-carboxymethyllysine and pentosidine formation with OPB-9195 was more efficient than with aminoguanidine. OPB-9195 also proved effective in blocking the carbonyl amine chemical processes involved in the formation of two ALE (malondialdehyde-lysine and 4-hydroxynonenal-protein adduct). The efficiency of OPB-9195 was similar to that of aminoguanidine. When glucose-based peritoneal dialysis fluid was incubated in the presence of OPB-9195, a similar inhibition of AGE formation was observed. The direct effect of OPB-9195 on major glucose-derived RCO in peritoneal dialysis fluids was then evaluated. The effects of OPB-9195 could be accounted for by its ability to trap RCO. The concentrations of three major glucose-derived RCO (glyoxal, methylglyoxal, and 3-deoxy-glucosone) were significantly lower in the presence of OPB-9195 than in its absence. Aminoguanidine had a similar effect. In conclusion, OPB-9195 inhibits both AGE and ALE formation, probably through its ability to trap RCO. OPB-9195 might prove to be a useful tool to inhibit some of the effects of RCO-related uremic toxicity. Topics: Aldehydes; Arachidonic Acid; Arginine; Deoxyglucose; Dialysis Solutions; Glycation End Products, Advanced; Glyoxal; Guanidines; Lipid Metabolism; Lysine; Malondialdehyde; Oxidation-Reduction; Peritoneal Dialysis; Prodrugs; Pyruvaldehyde; Thiadiazoles; Thiazolidines | 2000 |
Congeners of N(alpha)-acetyl-L-cysteine but not aminoguanidine act as neuroprotectants from the lipid peroxidation product 4-hydroxy-2-nonenal.
Increased generation of neurotoxic lipid peroxidation products is proposed to contribute to the pathogenesis of Alzheimer's disease (AD). Current antioxidant therapies are directed at limiting propagation of brain lipid peroxidation. Another approach would be to scavenge the reactive aldehyde products of lipid peroxidation. N(alpha)-acetyl-L-cysteine (NAC) and aminoguanidine (AG) react rapidly and irreversibly with 4-hydroxy-2-nonenal (HNE) in vitro, and both have been proposed as potential scavengers of HNE in biological systems. We have compared NAC, AG, and a series of congeners as scavengers of HNE and as neuroprotectants from HNE. Our results showed that while both NAC and AG had comparable chemical reactivity with HNE, only NAC and its congeners were able to block HNE-protein adduct formation in vitro and in neuronal cultures. Moreover, NAC and its congeners, but not AG, effectively protected brain mitochondrial respiration and neuronal microtubule structure from the toxic effects of HNE. We conclude that NAC and its congeners, but not AG, may act as neuroprotectants from HNE. Topics: Acetylcysteine; Aldehydes; Animals; Brain; Cell Line; Free Radical Scavengers; Guanidines; In Vitro Techniques; Lipid Peroxidation; Magnetic Resonance Spectroscopy; Male; Mitochondria; Neuroprotective Agents; Rats; Rats, Sprague-Dawley | 2000 |
Efficient scavenging of fatty acid oxidation products by aminoguanidine.
Lipid oxidation leads to the formation of reactive aldehydes that may play an important role in atherogenesis by altering the normal pathway of lipoprotein metabolism and by exerting toxic effects on vascular wall components. Recent studies indicate that advanced glycation end products, which form spontaneously from the reaction of reducing sugars with amino groups, may promote oxidative damage in vivo. Moreover, the pharmacological inhibitor of advanced glycation aminoguanidine has been shown to lower circulating low-density lipoprotein levels in human subjects and to inhibit certain oxidative reactions in vitro. To define more precisely the potential interaction of AG with oxidized lipids, we have studied and identified the major products that form from the reaction of AG with the oxidation products 4-hydroxynonenal and malondialdehyde. AG was found to be an efficient scavenger of alpha,beta-unsaturated aldehydes when compared to nucleophilic amino acids (Cys, Lys, His), suggesting that one of its mechanisms of action in vivo is to protect tissue constituents from the damaging effects of oxidative stress. Topics: Aldehydes; Fatty Acids; Guanidines; Malondialdehyde; Oxidation-Reduction | 1997 |