4-hydroxy-2-nonenal has been researched along with linsidomine* in 6 studies
6 other study(ies) available for 4-hydroxy-2-nonenal and linsidomine
Article | Year |
---|---|
Cruciferous dithiolethione-mediated coordinated induction of total cellular and mitochondrial antioxidants and phase 2 enzymes in human primary cardiomyocytes: cytoprotection against oxidative/electrophilic stress and doxorubicin toxicity.
3H-1,2-dithiole-3-thione (D3T), a cruciferous organosulfur compound, induces cytoprotective enzymes in animal cardiovascular cells. However, it remains unknown if D3T also upregulates antioxidants and phase 2 enzymes in human cardiomyocytes, and protects against cell injury induced by oxidative/electrophilic species as well as doxorubicin. In this study, we found that D3T (10-50 muM) potently induced a series of antioxidants and phase 2 enzymes in primary cultured human cardiomyocytes, including superoxide dismutase (SOD), glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx) glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1 (NQO1), aldose reductase (AR), and heme oxygenase (HO). D3T treatment also caused elevation of SOD, GSH, GR, GPx and GST in the isolated mitochondria. We also observed a time-dependent induction by D3T of mRNA expression for Cu,ZnSOD, MnSOD, gamma-glutamylcysteine ligase, GR, GSTA1, GSTM1, NQO1, AR, and HO-1. Pretreatment with D3T conferred concentration-dependent protection against cell injury induced by xanthine oxidase (XO)/xanthine, H(2)O(2), 3-morpholinosydnonimine, 4-hydroxy-2-nonenal, and doxorubicin. Pretreatment with D3T also reduced the formation of intracellular reactive oxygen species by XO/xanthine, H(2)O(2), and doxorubicin. In conclusion, this study demonstrated that D3T potently upregulated many antioxidants and phase 2 enzymes in human cardiomyocytes, which was accompanied by increased resistance to oxidative/electrophilic stress and doxorubicin toxicity. Topics: Aldehydes; Antineoplastic Agents; Antioxidants; Cell Line; Cytoprotection; Doxorubicin; Humans; Metabolic Detoxication, Phase II; Mitochondria; Molsidomine; Myocytes, Cardiac; Oxidative Stress; Reactive Oxygen Species; Thiones; Thiophenes; Up-Regulation; Xanthine Oxidase | 2009 |
Spin trapping and cytoprotective properties of fluorinated amphiphilic carrier conjugates of cyclic versus linear nitrones.
Nitrones have been employed as spin trapping reagent as well as pharmacological agent against neurodegenerative diseases and ischemia-reperfusion induced injury. The structure-activity relationship was explored for the two types of nitrones, i.e., cyclic (DMPO) and linear (PBN), which are conjugated to a fluorinated amphiphilic carrier (FAC) for their cytoprotective properties against hydrogen peroxide (H(2)O(2)), 3-morpholinosynonimine hydrochloride (SIN-1), and 4-hydroxynonenal (HNE) induced cell death on bovine aortic endothelial cells. The compound FAMPO was synthesized and characterized, and its physical-chemical and spin trapping properties were explored. Cytotoxicity and cytoprotective properties of various nitrones either conjugated and nonconjugated to FAC (i.e., AMPO, FAMPO, PBN, and FAPBN) were assessed using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) reduction assay. Results show that of all the nitrones tested, FAPBN is the most protective against H(2)O(2), but FAMPO and to a lesser extent its unconjugated form, AMPO, are more protective against SIN-1 induced cytotoxicity. However, none of the nitrones used protect the cells from HNE-induced cell death. The difference in the cytoprotective properties observed between the cyclic and linear nitrones may arise from the differences in their intrinsic antioxidant properties and localization in the cell. Topics: Aldehydes; Animals; Antihypertensive Agents; Cattle; Cross-Linking Reagents; Drug Carriers; Endothelial Cells; Fluorine; Hydrogen Peroxide; Molsidomine; Nitrogen Oxides; Spin Trapping | 2009 |
Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers.
Peroxynitrite-mediated oxidative damage has been implicated in brain mitochondrial respiratory dysfunction after traumatic brain injury (TBI), which precedes the onset of neuronal loss. The aim of this study was to investigate the detrimental effects of the peroxynitrite donor SIN-1 (3-morpholinosydnonimine) on isolated brain mitochondria and to screen penicillamine, a stoichiometric (1:1) peroxynitrite-scavenging agent, and tempol, a catalytic scavenger of peroxynitrite-derived radicals, as antioxidant mitochondrial protectants. Exposure of the isolated mitochondria to SIN-1 caused a significant dose-dependent decrease in the respiratory control ratio and was accompanied by a significant increase in state II respiration, followed by significant decreases (P < 0.05) in states III and V. These functional alterations occurred together with significant increases in mitochondrial protein carbonyl (PC), lipid peroxidation-related 4-hydroxynonenal (4-HNE), and 3-nitrotyrosine (3-NT) content. Penicillamine hydrochloride (10 microM) partially but significantly (P < 0.05) protected against SIN-1-induced decreases in states III and V. However, a 2.5 microM concentration of tempol was able to significantly antagonize a 4-fold molar excess (10 microM) concentration of SIN-1 as effectively as were higher tempol concentrations, consistent with the likelihood that tempol works by a catalytic mechanism. The protection of mitochondrial respiration by penicillamine and tempol occurred in parallel with attenuation of PC, 4-HNE, and 3-NT. These results indicate that SIN-1 causes mitochondrial oxidative damage and complex I dysfunction and that antioxidant compounds that target either peroxynitrite or its radicals may be effective mitochondrial protectants in the treatment of neural injury. Topics: Aldehydes; Animals; Cell Respiration; Cerebral Cortex; Cyclic N-Oxides; Dose-Response Relationship, Drug; Electron Transport Complex I; Free Radical Scavengers; In Vitro Techniques; Male; Mice; Mice, Inbred Strains; Mitochondria; Molsidomine; Nitric Oxide Donors; Oxidative Stress; Oxygen Consumption; Penicillamine; Peroxynitrous Acid; Protein Carbonylation; Spin Labels; Tyrosine | 2007 |
Peroxynitrite generated at the level produced by spinal cord injury induces peroxidation of membrane phospholipids in normal rat cord: reduction by a metalloporphyrin.
The goal of the present study was to determine in vivo whether peroxynitrite, at the concentration and duration produced by SCI, contributes to membrane lipid peroxidation (MLP) after traumatic spinal cord injury (SCI) and the capability of a broad spectrum scavenger of reactive species, Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), to reduce MLP. This was accomplished by administering a peroxynitrite donor 3-morpholinosydnonimine (SIN-1) into the gray matter of an uninjured rat spinal cord through a microdialysis fiber to generate ONOO at the SCI-elevated levels. The resulting MLP was characterized by measuring the productions of extracellular malondialdehyde and of intracellular 4-hydroxynonenal. We demonstrated that extracellular SIN- 1 administration significantly increased the concentration of malondialdehyde (p < 0.001) and the numbers of hydroxynonenal-positive cells (p < 0.001) as compared to a control group in which ACSF was administered. Simultaneous administration of MnTBAP through a second microdialysis fiber significantly reduced SIN-1-induced malondialdehyde production (p < 0.001) and the numbers of HNE-positive cells (p < 0.001). There was no significant difference between MnTBAP-treated and ACSF-controls (p = 0.3). These results demonstrate in vivo that (1) SCI-produced levels of peroxynitrite sufficient to cause MLP, and therefore that peroxynitrite is an agent of secondary damage after acute SCI; (2) MnTBAP can efficiently reduce SIN-1-induced MLP. Topics: Aldehydes; Animals; Cell Membrane; Free Radical Scavengers; Lipid Peroxidation; Male; Malondialdehyde; Metalloporphyrins; Molsidomine; Nitric Oxide Donors; Peroxynitrous Acid; Phospholipids; Rats; Rats, Sprague-Dawley; Spinal Cord Injuries | 2005 |
The role of reactive oxygen species in action of nitric oxide-donors on stress-induced gastric mucosal lesions.
The experimental model of acute gastritis such as water immersion restraint (WRS) stress-induced gastric injury is useful tool in examination of pathomechanism of acute gastritis. Nitric oxide (NO) plays an important role in the maintenance of gastric barrier, however, the interaction between reactive oxygen species (ROS) and NO on gastric mucosal integrity has been little studied. The purpose of our present study was to explain the participation of ROS in healing of WRS-induced gastric lesions accelerated by NO. Experiments were carrying out on 120 male Wistar rats. To assess gastric blood flow (GBF) laser Doppler flowmeter was used and the number of gastric lesions was counted in each stomach. The colorimetric assays were used to determine gastric tissue level of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), the products of lipid peroxidation by ROS, as well as superoxide dismutase (SOD) activity, the enzyme scavanger of ROS. We demonstrated that 3.5 h of WRS resulted in appearance of acute gastric lesions accompanied by a significant decrease of GBF. Biological effects of ROS were estimated by measuring tissue levels of MDA and 4-HNE, as well as the SOD activity. It was demonstrated that 3.5 h of WRS led to significant increase of mucosal levels of MDA and 4-HNE, and it was accompanied by a decrease of SOD activity. Pretreatment with NO-donors (SIN-1, SNAP, nitroglycerin, NO-ASA) resulted in reduction in gastric lesion number, increment of GBF, decrease of MDA and 4-HNE tissue level and increase of SOD activity. Suppression of ROS plays an important role in the action of NO-donors on healing of acute gastric lesions induced by 3.5 h of WRS. NO-donors caused an attenuation of lipid peroxidation as documented by a decrease of MDA and 4-HNE levels and enhancement of antioxidative properties as evidenced by an increase of SOD activity. Topics: Aldehydes; Animals; Aspirin; Gastric Mucosa; Lipid Peroxidation; Male; Malondialdehyde; Molsidomine; Nitric Oxide Donors; Nitroglycerin; Rats; Rats, Wistar; Reactive Oxygen Species; Regional Blood Flow; S-Nitroso-N-Acetylpenicillamine; Statistics, Nonparametric; Stomach Ulcer; Stress, Psychological; Superoxide Dismutase | 2002 |
Peroxynitrite induces contractile dysfunction and lipid peroxidation in the diaphragm.
Peroxynitrite may be generated in and around muscles in several pathophysiological conditions (e.g., sepsis) and may induce muscle dysfunction in these disease states. The effect of peroxynitrite on muscle force generation has not been directly assessed. The purpose of the present study was to assess the effects of peroxynitrite administration on diaphragmatic force-generating capacity in 1) intact diaphragm muscle fiber bundles (to model the effects produced by exposure of muscles to extracellular peroxynitrite) and 2) single skinned diaphragm muscle fibers (to model the effects of intracellular peroxynitrite on contractile protein function) by examining the effects of both peroxynitrite and a peroxynitrite-generating solution, 3-morpholinosydnonimine, on force vs. pCa characteristics. In intact diaphragm preparations, peroxynitrite reduced diaphragm force generation and increased muscle levels of 4-hydroxynonenal (an index of lipid peroxidation). In skinned fibers, both peroxynitrite and 3-morpholinosydnonimine reduced maximum calcium-activated force. These data indicate that peroxynitrite is capable of producing significant diaphragmatic contractile dysfunction. We speculate that peroxynitrite-mediated alterations may be responsible for much of the muscle dysfunction seen in pathophysiological conditions such as sepsis. Topics: Aldehydes; Animals; Calcium; Diaphragm; Kinetics; Lipid Peroxidation; Molsidomine; Muscle Contraction; Nitrates; Nitric Oxide Donors; Rats; Thiobarbituric Acid Reactive Substances | 1999 |