4-hydroxy-2-nonenal has been researched along with lactacystin* in 2 studies
2 other study(ies) available for 4-hydroxy-2-nonenal and lactacystin
Article | Year |
---|---|
Effect of overexpression of wild-type or mutant parkin on the cellular response induced by toxic insults.
Mutations in parkin are involved in some cases of autosomal recessive juvenile parkinsonism (AR-JP), but it is not known how they result in nigral cell death. We examined the effect of parkin overexpression on the response of cells to various insults. Wild-type and AR-JP-associated mutant parkins (Del3-5, T240R, and Q311X) were overexpressed in NT-2 and SK-N-MC cells. Overexpressed wild-type parkin delayed cell death induced by serum withdrawal, H(2)O(2), 1-methyl-4-phenylpyridinium (MPP(+)), or 4-hydroxy-2-trans-nonenal (HNE) but did not delay cell death caused by the proteasome inhibitor lactacystin. Increases in damage to proteins (protein carbonyls and 3-nitrotyrosine) were attenuated by wild-type parkin after serum withdrawal or exposure to H(2)O(2), MPP(+), or HNE but not after exposure to lactacystin. The mutant parkins (of all types) markedly accelerated cell death in response to all the insults, accompanied by increased levels of 8-hydroxyguanine, protein carbonyls, lipid peroxidation, and 3-nitrotyrosine and decreased levels of GSH. The viability loss induced by all the insults showed apoptotic features. The presence of parkin mutations in substantia nigra in Parkinson's disease may increase neuronal vulnerability to a range of toxic insults. Topics: 1-Methyl-4-phenylpyridinium; Acetylcysteine; Aldehydes; Apoptosis; Cell Death; Cell Line, Tumor; Drug Resistance; Enzyme Inhibitors; Genetic Predisposition to Disease; Glutamic Acid; Guanine; Humans; Hydrogen Peroxide; Mutation; Nerve Degeneration; Neurons; Neurotoxins; Oxidative Stress; Parkinsonian Disorders; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Substantia Nigra; Tyrosine; Ubiquitin-Protein Ligases | 2005 |
Decreased levels of proteasome activity and proteasome expression in aging spinal cord.
Neuron death and neuron degeneration occur in the CNS during the course of aging. Although multiple cellular alterations transpire during the aging process, those that mediate age-associated neuron death have not been identified. Recent evidence implicates oxidative stress as a possible means of neuron death and neuron degeneration during aging. In the present study, we demonstrate a marked decrease in multicatalytic proteasome activity in the spinal cord of Fisher 344 rats at 12, 24 and 28 months, compared with spinal cord tissue from 3-week- and 3-month-old animals. Application of oxidative injury (FeSO(4)) or the lipid peroxidation product 4-hydroxynonenal decreases multicatalytic proteasome activity in a time- and dose-dependent manner in a motor neuron cell line. Loss of multicatalytic proteasome activity occurs before the loss of multicatalytic proteasome immunoreactivity, with FeSO(4)- and 4-hydroxynonenal-mediated decreases ameliorated by the application of a cell permeable form of the antioxidant glutathione. Application of multicatalytic proteasome inhibitors, but not inhibitors of lysosomal proteases, induced neuron death that was attenuated by the caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-(O-methyl) fluoromethyl ketone or N-acetyl-Asp-Glu-Val-Asp-Cho (aldehyde). Together, these data suggest that multicatalytic proteasome inhibition occurs during aging of the spinal cord, possibly as the result of oxidative stress, and that multicatalytic proteasome inhibition may be causally related to neuron death. Topics: Acetylcysteine; Aging; Aldehydes; Amino Acid Chloromethyl Ketones; Animals; Cell Death; Cell Survival; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Glutathione; Iron; Lipid Peroxidation; Lysosomes; Mice; Motor Neurons; Multienzyme Complexes; Neuroblastoma; Oligopeptides; Oxidative Stress; Proteasome Endopeptidase Complex; Rats; Rats, Inbred F344; Reactive Oxygen Species; Spinal Cord; Tumor Cells, Cultured | 2000 |