4-hydroxy-2-nonenal has been researched along with ferric-chloride* in 2 studies
2 other study(ies) available for 4-hydroxy-2-nonenal and ferric-chloride
Article | Year |
---|---|
Melatonin protects against taurolithocholic-induced oxidative stress in rat liver.
Cholestasis, encountered in a variety of clinical disorders, is characterized by intracellular accumulation of toxic bile acids in the liver. Furthermore, oxidative stress plays an important role in the pathogenesis of bile acids. Taurolithocholic acid (TLC) was revealed in previous studies as the most pro-oxidative bile acid. Melatonin, a well-known antioxidant, is a safe and widely used therapeutic agent. Herein, we investigated the hepatoprotective role of melatonin on lipid and protein oxidation induced by TLC alone and in combination with FeCl(3) and ascorbic acid in rat liver homogenates and hepatic membranes. The lipid peroxidation products, malondialdehyde and 4-hydroxyalkenals (MDA + 4-HDA), and carbonyl levels were quantified as indices of oxidative damage to hepatic lipids and proteins, respectively. In the current study, the rise in MDA + 4-HDA levels induced by TLC was inhibited by melatonin in a concentration-dependent manner in both liver homogenates and in hepatic membranes. Melatonin also had protective effects against structural damage to proteins induced by TLC in membranes. These results suggest that the indoleamine melatonin may potentially act as a protective agent in the therapy of those diseases that involve bile acid toxicity. Topics: Aldehydes; Animals; Antioxidants; Ascorbic Acid; Chlorides; Cholagogues and Choleretics; Dose-Response Relationship, Drug; Ferric Compounds; Lipid Peroxidation; Liver; Malondialdehyde; Melatonin; Oxidation-Reduction; Oxidative Stress; Protein Carbonylation; Rats; Rats, Sprague-Dawley; Taurolithocholic Acid | 2010 |
Susceptibility of amyloid beta peptide degrading enzymes to oxidative damage: a potential Alzheimer's disease spiral.
Insulysin (IDE) and neprilysin (NEP) were found to be inactivated by oxidation with hydrogen peroxide, an iron-ascorbate oxidation system, and by treatment with 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). In each case reaction led to the introduction of protein carbonyl groups as judged by reaction with 2,4-dintrophenylhydrazine. IDE was inactivated by reaction with 4-hydroxy-2-nonenal (HNE) with the concomitant formation of protein adducts. NEP was not inactivated to a significant extent by HNE, but some HNE-adduct formation did occur. Prior reaction with hydrogen peroxide or AAPH led to enhanced formation of HNE adducts. Treatment of IDE with AAHP or hydrogen peroxide increased its susceptibility to proteolysis, while treatment of NEP with iron/ascorbate or hydrogen peroxide increased its susceptibility to proteolysis. Since IDE and NEP play a prominent role in the clearance of amyloid beta peptides, their oxidative inactivation and enhanced proteolysis can contribute to the onset and/or progression of Alzheimer's disease. Topics: Aldehydes; Alzheimer Disease; Amidines; Amyloid beta-Peptides; Ascorbic Acid; Chlorides; Chymotrypsin; Ferric Compounds; Hydrogen Peroxide; Insulysin; Neprilysin; Oxidation-Reduction; Trypsin | 2005 |