4-hydroxy-2-nonenal has been researched along with epicatechin-gallate* in 2 studies
2 other study(ies) available for 4-hydroxy-2-nonenal and epicatechin-gallate
Article | Year |
---|---|
Catechins in green tea powder (matcha) are heat-stable scavengers of acrolein, a lipid peroxide-derived reactive carbonyl species.
Lipid peroxidation-derived reactive carbonyl species (RCS) such as acrolein and 4-hydroxynonenal pose health risks. We characterized the RCS-scavenging reactions of tea catechins in an aqueous solution and in baked cake. Acrolein's reaction with each of the major tea catechins (epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate) resulted in the formation of mono-, di-, and tri-acrolein conjugates of each catechin as revealed by our LC-linear ion trap MS analysis. The formation of the acrolein-conjugates of the four catechins was confirmed in the reaction of acrolein with green tea powder (matcha) extract. The addition of matcha tea powder to cake dough significantly suppressed the accumulation of RCS during cake baking. The mono-acrolein conjugates of the four major catechins were detected in the baked cake. The RCS-scavenging capability of tea catechins offers a new functionality of matcha tea powder, and its heat stability demonstrates the usefulness of matcha as a food additive. Topics: Acrolein; Aldehydes; Catechin; Chromatography, High Pressure Liquid; Cooking; Free Radical Scavengers; Hot Temperature; Mass Spectrometry; Plant Extracts; Powders; Tea | 2021 |
Polyphenols from Camellia sinenesis prevent primary graft failure after transplantation of ethanol-induced fatty livers from rats.
Fatty liver caused by ethanol decreases survival after liver transplantation in rats. This study investigated if antioxidant polyphenols from Camellia sinenesis (green tea) prevent failure of fatty grafts from ethanol-treated rats. Donor rats were given ethanol intragastrically (6 g/kg). After 20 h, livers were explanted and stored in University of Wisconsin solution for 24 h. Prior to implantation, the explanted grafts were rinsed with lactated Ringer's solution containing 0 to 60 microg/ml polyphenols. Alanine aminotransferase (ALT) release after liver transplantation was 4.5-fold higher in recipients receiving ethanol-induced fatty grafts than in those receiving normal grafts. Liver grafts from ethanol-treated donors also developed severe focal necrosis. Graft survival was 11% in the ethanol group versus 88% for normal grafts. Polyphenol treatment at 60 microg/ml blunted ALT release by 66%, decreased necrotic areas by 84%, and increased survival to 75%. Ethanol increased alpha-(4-pyridyl-1-oxide)-N-tert.-butylnitrone free radical adducts in bile by 2.5-fold, as measured by electron spin resonance spectroscopy, and caused accumulation of 4-hydroxynonenal in liver sections, effects blunted by polyphenols. Epicatechin gallate, a major polyphenol from C. sinenesis, also decreased enzyme release, minimized pathological changes, and decreased free radical adduct formation. In conclusion, polyphenols scavenged free radicals in ethanol-induced fatty livers and decreased injury after liver transplantation. Topics: Alanine Transaminase; Aldehydes; Animals; Antioxidants; Bile; Camellia; Catechin; Central Nervous System Depressants; Electron Spin Resonance Spectroscopy; Ethanol; Fatty Liver; Female; Flavonoids; Free Radical Scavengers; Free Radicals; Graft Survival; Liver Transplantation; Necrosis; Phenols; Polyphenols; Rats; Rats, Sprague-Dawley | 2004 |