4-hydroxy-2-nonenal and 4-oxo-2-nonenal

4-hydroxy-2-nonenal has been researched along with 4-oxo-2-nonenal* in 42 studies

Reviews

2 review(s) available for 4-hydroxy-2-nonenal and 4-oxo-2-nonenal

ArticleYear
[Oxidative stress-mediated chemical modifications to biomacromolecules: mechanism and implication of modifications to human skin keratins and angiotensin II].
    Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan, 2013, Volume: 133, Issue:10

    Dysregulated production of reactive oxygen species (ROS) during oxidative stress has been associated with a number of inflammatory and age-related degenerative diseases. ROS can directly react with DNA to form oxidized DNA bases. Direct protein oxidation and carbonylation occur on certain amino acid residues resulting in various post-translational modifications. ROS can also initiate the formation of lipid hydroperoxides, which undergo homolytic decomposition to the α,β-unsaturated aldehydic bifunctional electrophiles such as 4-oxo-2(E)-nonenal (ONE) and 4-hydroxy-2(E)-nonenal (HNE). Intracellular generation of highly reactive aldehydes can then result in the formation of DNA and protein adducts. ONE-derived heptanone-etheno and HNE-derived propano DNA adducts have been detected and shown to be mutagenic in a variety of biological systems. In addition, ONE and HNE are involved in protein dysfunctions and altered gene regulations through the modification of amino acid residues and crosslinking of proteins. Our recent study on human skin keratins has identified specific K1 methionine residues as the most susceptible sites to oxidation with hydrogen peroxide, which can be potential biomarkers of oxidative skin damage. The reactions of angiotensin (Ang) II with ONE or HNE produced several modified Ang IIs including a novel pyruvamide-Ang II that formed via oxidative decarboxylation of N-terminal aspartic acid. Subsequently, it has been revealed that the oxidative modifications on the N-terminus of Ang II disrupt interactions with Ang II type 1 receptor and aminopeptidase A, which could affect the regulation of cardiovascular function.

    Topics: Aldehydes; Angiotensin II; Animals; Aspartic Acid; Cardiovascular Diseases; DNA; DNA Damage; Glutamyl Aminopeptidase; Humans; Keratins; Lipid Peroxides; Mass Spectrometry; Methionine; Oxidative Stress; Reactive Oxygen Species; Receptor, Angiotensin, Type 2; Skin

2013
Protein adducts generated from products of lipid oxidation: focus on HNE and one.
    Drug metabolism reviews, 2006, Volume: 38, Issue:4

    Modification of proteins in conditions of oxidative stress can contribute to protein dysfunction or tissue damage and disease progression. Bifunctional, most often alpha,beta-unsaturated carbonyl compounds such as 4-hydroxy-2-nonenal (HNE), 4-oxo-2-nonenal (ONE), and acrolein, generated from oxidation of polyunsaturated fatty acids (PUFAs), readily bind to protein nucleophiles. Modification by bifunctional aldehydes can also lead to intramolecular or intermolecular protein crosslinking. Model studies are revealing the structure of adducts that can then be more readily identified in mass spectrometric studies on proteins exposed to the various pure aldehydes or to peroxidized PUFAs. Although simple Michael and Schiff base adducts are often formed initially, only some of these adducts, such as the HNE- and ONE-derived Michael adducts on Cys and His residues, are found to survive the conditions of proteolysis and HPLC-MS analysis. Reversibly formed adducts, such as the HNE-Lys Michael adduct, can be found on proteolytic peptides only if a NaBH4-reduction step is used prior to proteolysis. Initial adducts can evolve by tautomerization, oxidation, cyclization, dehydration, and sometimes condensation with a second aldehyde molecule (the same or different), to give stable advanced lipoxidation end products (ALEs) that can be found by mass spectrometry. These include the HNE-Lys-derived 2-pentylpyrrole, the ONE-Lys-derived 4-ketoamide, the ONE-derived His-Lys pyrrole crosslink, and a Lys-derived 3-formyl-4-pentylpyrrole that results from combined action of ONE and acrolein. Michael adducts of alpha,beta-unsaturated aldehydes such as HNE and ONE can be derivatized by 2,4-dinitrophenylhydrazine (DNPH) and can thus constitute significant DNPH-detectable protein-bound carbonyl activity that serves as a key indicator of oxidative stress in tissues. It appears that lipid oxidation is a more important contributor to such activity than metal-catalyzed oxidation of protein side-chains.

    Topics: Aldehydes; Animals; Humans; Lipid Peroxidation; Oxidation-Reduction; Oxidative Stress; Proteins; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2006

Other Studies

40 other study(ies) available for 4-hydroxy-2-nonenal and 4-oxo-2-nonenal

ArticleYear
Lipid Peroxidation Products HNE and ONE Promote and Stabilize Alpha-Synuclein Oligomers by Chemical Modifications.
    Biochemistry, 2021, 11-30, Volume: 60, Issue:47

    The aggregation of α-synuclein (αSN) and increased oxidative stress leading to lipid peroxidation are pathological characteristics of Parkinson's disease (PD). Here, we report that aggregation of αSN in the presence of lipid peroxidation products 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) increases the stability and the yield of αSN oligomers (αSO). Further, we show that ONE is more efficient than HNE at inducing αSO. In addition, we demonstrate that the two αSO differ in both size and shape. ONE-αSO are smaller in size than HNE-αSO, except when they are formed at a high molar excess of aldehyde. In both monomeric and oligomeric αSN, His50 is the main target of HNE modification, and HNE-induced oligomerization is severely retarded in the mutant His50Ala αSN. In contrast, ONE-induced aggregation of His50Ala αSN occurs readily, demonstrating the different pathways for inducing αSN aggregation by HNE and ONE. Our results show different morphologies of the HNE-treated and ONE-treated αSO and different roles of His50 in their modification of αSN, but we also observe structural similarities between these αSO and the non-treated αSO, e.g., flexible C-terminus, a folded core composed of the N-terminal and NAC region. Furthermore, HNE-αSO show a similar deuterium uptake as a previously characterized oligomer formed by non-treated αSO, suggesting that the backbone conformational dynamics of their folded cores resemble one another.

    Topics: Aldehydes; alpha-Synuclein; Cell Line, Tumor; Humans; Lipid Peroxidation; Nuclear Magnetic Resonance, Biomolecular; Parkinson Disease; Protein Aggregates; Recombinant Proteins; Scattering, Small Angle; X-Ray Diffraction

2021
4-Hydroxynonenal and 4-Oxononenal Differentially Bind to the Redox Sensor MitoNEET.
    Chemical research in toxicology, 2019, 06-17, Volume: 32, Issue:6

    MitoNEET is a CDGSH iron-sulfur protein that has been a target for drug development for diseases such as type-2 diabetes, cancer, and Parkinson's disease. Functions proposed for mitoNEET are as a redox sensor and regulator of free iron in the mitochondria. We have investigated the reactivity of mitoNEET toward the reactive electrophiles 4-hydroxynonenal (HNE) and 4-oxononenal (ONE) that are produced from the oxidation of polyunsaturated fatty acid during oxidative stress. Proteomic, electrophoretic, and spectroscopic analysis has shown that HNE and ONE react in a sequence selective manner that was unexpected considering the structure similarity of these two reactive electrophiles.

    Topics: Aldehydes; Binding Sites; Humans; Mitochondrial Proteins; Models, Molecular; Molecular Structure; Oxidation-Reduction

2019
Angiotensin II-Induced Oxidative Stress in Human Endothelial Cells: Modification of Cellular Molecules through Lipid Peroxidation.
    Chemical research in toxicology, 2019, 07-15, Volume: 32, Issue:7

    Angiotensin (Ang) II is a major bioactive peptide of the renin/angiotensin system and is involved in various cardiovascular functions and diseases. Ang II type 1 (AT

    Topics: Aldehydes; Angiotensin II; Ascorbic Acid; Carbon Isotopes; Cell Line; Copper Sulfate; Endothelial Cells; Humans; Isotope Labeling; Linoleic Acid; Lipid Peroxidation; Oxidative Stress; Receptor, Angiotensin, Type 1

2019
Generation and Characterization of Stable α-Synuclein Oligomers.
    Methods in molecular biology (Clifton, N.J.), 2018, Volume: 1779

    Alpha-synuclein oligomers are linked to the pathogenesis of Parkinson's disease and related neurodegenerative diseases. In this chapter, we present a method to generate kinetically stable α-synuclein oligomers by the addition of reactive aldehydes, 4-hydroxy-2-nonenal, and 4-oxo-2-nonenal. We also describe biochemical and immunological techniques to characterize the generated oligomers.

    Topics: Aldehydes; alpha-Synuclein; Electrophoresis, Polyacrylamide Gel; Humans; Microscopy, Atomic Force; Parkinson Disease; Protein Multimerization; Protein Stability

2018
Low molar excess of 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote oligomerization of alpha-synuclein through different pathways.
    Free radical biology & medicine, 2017, Volume: 110

    Aggregated alpha-synuclein is the main component of Lewy bodies, intraneuronal inclusions found in brains with Parkinson's disease and dementia with Lewy bodies. A body of evidence implicates oxidative stress in the pathogenesis of these diseases. For example, a large excess (30:1, aldehyde:protein) of the lipid peroxidation end products 4-oxo-2-nonenal (ONE) or 4-hydroxy-2-nonenal (HNE) can induce alpha-synuclein oligomer formation. The objective of the study was to investigate the effect of these reactive aldehydes on alpha-synuclein at a lower molar excess (3:1) at both physiological (7.4) and acidic (5.4) pH. As observed by size-exclusion chromatography, ONE rapidly induced the formation of alpha-synuclein oligomers at both pH values, but the effect was less pronounced under the acidic condition. In contrast, only a small proportion of alpha-synuclein oligomers were formed with low excess HNE-treatment at physiological pH and no oligomers at all under the acidic condition. With prolonged incubation times (up to 96h), more alpha-synuclein was oligomerized at physiological pH for both ONE and HNE. As determined by Western blot, ONE-oligomers were more SDS-stable and to a higher-degree cross-linked as compared to the HNE-induced oligomers. However, as shown by their greater sensitivity to proteinase K treatment, ONE-oligomers, exhibited a less compact structure than HNE-oligomers. As indicated by mass spectrometry, ONE modified most Lys residues, whereas HNE primarily modified the His50 residue and fewer Lys residues, albeit to a higher degree than ONE. Taken together, our data show that the aldehydes ONE and HNE can modify alpha-synuclein and induce oligomerization, even at low molar excess, but to a higher degree at physiological pH and seemingly through different pathways.

    Topics: Aldehydes; alpha-Synuclein; Amino Acid Sequence; Endopeptidase K; Humans; Hydrogen-Ion Concentration; Lipid Peroxidation; Oxidative Stress; Peptide Fragments; Protein Multimerization; Proteolysis; Solutions

2017
Nutrient deprivation in neuroblastoma cells alters 4-hydroxynonenal-induced stress response.
    Oncotarget, 2017, Jan-31, Volume: 8, Issue:5

    4-hydroxy-2-nonenal (HNE), a toxic lipid peroxidation product, is associated with oxidative damage in cells and involved in various diseases including the initiation and progression of cancer. Cancer cells have a high, adaptable metabolism with a shift from oxidative phosphorylation to glycolysis and rely on high levels of glucose and glutamine as essential nutrients for cell growth. Here we investigated whether the toxic effects of HNE on the mitochondrial membrane potential (MMP) of cancer cells depends on their metabolic state by deprivation of glucose and/or glutamine. The addition of 16 μM HNE to N18TG2 neuroblastoma cells incubated in glucose medium led to a severe reduction of MMP, which was similar to the MMP of cells fed with both glucose and glutamine. In contrast, HNE addition to cells starved in glutamine medium increased their MMP slightly for a prolonged time period and this was accompanied by increased cellular survival. We found that ß-oxidation of HNE did not cause the increased MMP, since the aldehyde dehydrogenase was distinctly more active in cells with glucose medium. However, after blocking fatty acid ß-oxidation in cells starved in glutamine medium with etomoxir, which inhibits carnitine palmitoyltransferase 1, HNE addition induced a strong reduction of MMP similar to cells in glucose medium. Surprisingly, the effect of more toxic 4-oxo-2-nonenal was less pronounced. Our results suggest that in contrast to cells fed with glucose, glutamine-fed cancer cells are capable of ß-oxidizing fatty acids to maintain their MMP to combat the toxic effects of HNE.

    Topics: Aldehydes; Animals; Cell Line, Tumor; Cell Shape; Cell Survival; Energy Metabolism; Glucose; Glutamine; Lipid Peroxidation; Membrane Potential, Mitochondrial; Mice; Mitochondria; Neuroblastoma; Oxidation-Reduction; Oxidative Stress; Time Factors

2017
Reaction Mechanism of Covalent Modification of Phosphatidylethanolamine Lipids by Reactive Aldehydes 4-Hydroxy-2-nonenal and 4-Oxo-2-nonenal.
    Chemical research in toxicology, 2017, 03-20, Volume: 30, Issue:3

    4-Hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) are biologically important reactive aldehydes formed during oxidative stress in phospholipid bilayers. They are highly reactive species due to presence of several reaction centers and can react with amino acids in peptides and proteins, as well as phosphoethanolamine (PE) lipids, thus modifying their biological activity. The aim of this work is to study in a molecular detail the reactivity of HNE and ONE toward PE lipids in a simplified system containing only lipids and reactive aldehydes in dichloromethane as an inert solvent. We use a combination of quantum chemical calculations,

    Topics: Aldehydes; Mass Spectrometry; Phosphatidylethanolamines; Proton Magnetic Resonance Spectroscopy; Spectroscopy, Fourier Transform Infrared

2017
Reduction of lipid peroxidation products and advanced glycation end-product precursors by cyanobacterial aldo-keto reductase AKR3G1—a founding member of the AKR3G subfamily.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2015, Volume: 29, Issue:1

    The purpose of this study was to investigate the origin and function of the aldo-keto reductase (AKR) superfamily as enzymes involved in the detoxification of xenobiotics. We used the cyanobacterium Synechocystis sp. PCC 6803 as a model organism and sequence alignments to find bacterial AKRs with highest identity to human enzymes. Disappearance of NADPH was monitored spectrophotometrically to calculate enzymatic activity. The molecular weight of the native protein was determined by size exclusion chromatography. Substrate docking was performed by SwissDock. Sequence alignments identified the NADPH-dependent AKR3G1 having 41.5 and 40% identity with the human enzymes AKR1B1 and AKR1B10, respectively. Highest enzymatic efficiency was observed with 4-oxonon-2-enal (4-ONE; k(cat)/K(m), 561 s(-1) mM(-1)) and 4-hydroxynonenal (k(cat)/K(m), 26.5 s(-1) mM(-1)), respectively. P74308 is the most efficient enzyme for 4-ONE discovered until now. Cooperativity of this monomeric enzyme was observed with some substrates. Enzyme inactivation or oligomerization as possible explanations for nonhyperbolic enzyme kinetics were ruled out by Selwyn's test and gel filtration. The role of the little investigated carbonyl-reducing enzymes in detoxification seems to be in fact a very old process with rarely observed nonhyperbolic enzyme kinetics as an adaptation mechanism to higher concentrations of reactive oxygen species.

    Topics: Aldehyde Reductase; Aldehydes; Aldo-Keto Reductases; Amino Acid Sequence; Bacterial Proteins; Catalytic Domain; Glycation End Products, Advanced; Humans; Kinetics; Ligands; Lipid Peroxidation; Models, Molecular; Molecular Sequence Data; Protein Conformation; Recombinant Proteins; Sequence Homology, Amino Acid; Synechocystis

2015
Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls.
    Chemico-biological interactions, 2015, Jun-05, Volume: 234

    Extensive research has shown that increased production of reactive oxygen species (ROS) results in tissue injury under a variety of pathological conditions and chronic degenerative diseases. While ROS are highly reactive and can incite significant injury, polyunsaturated lipids in membranes and lipoproteins are their main targets. ROS-triggered lipid-peroxidation reactions generate a range of reactive carbonyl species (RCS), and these RCS spread and amplify ROS-related injury. Several RCS generated in oxidizing lipids, such as 4-hydroxy trans-2-nonenal (HNE), 4-oxo-2-(E)-nonenal (ONE), acrolein, malondialdehyde (MDA) and phospholipid aldehydes have been shown to be produced under conditions of oxidative stress and contribute to tissue injury and dysfunction by depleting glutathione and other reductants leading to the modification of proteins, lipids, and DNA. To prevent tissue injury, these RCS are metabolized by several oxidoreductases, including members of the aldo-keto reductase (AKR) superfamily, aldehyde dehydrogenases (ALDHs), and alcohol dehydrogenases (ADHs). Metabolism via these enzymes results in RCS inactivation and detoxification, although under some conditions, it can also lead to the generation of signaling molecules that trigger adaptive responses. Metabolic transformation and detoxification of RCS by oxidoreductases prevent indiscriminate ROS toxicity, while at the same time, preserving ROS signaling. A better understanding of RCS metabolism by oxidoreductases could lead to the development of novel therapeutic interventions to decrease oxidative injury in several disease states and to enhance resistance to ROS-induced toxicity.

    Topics: Acrolein; Alcohol Oxidoreductases; Aldehyde Dehydrogenase; Aldehyde Reductase; Aldehydes; Aldo-Keto Reductases; Glutathione; Lipid Peroxidation; Lipids; Malondialdehyde; Oxidation-Reduction; Oxidative Stress; Oxidoreductases; Protein Carbonylation; Reactive Oxygen Species

2015
Changes in secondary structure of α-synuclein during oligomerization induced by reactive aldehydes.
    Biochemical and biophysical research communications, 2015, Aug-14, Volume: 464, Issue:1

    The oxidative stress-related reactive aldehydes 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) have been shown to promote formation of α-synuclein oligomers in vitro. However, the changes in secondary structure of α-synuclein and the kinetics of the oligomerization process are not known and were the focus of this study. Size exclusion chromatography showed that after 1 h of incubation, HNE induced the formation of an oligomeric α-synuclein peak with a molecular weight of about ∼2000 kDa, which coincided with a decreasing ∼50 kDa monomeric peak. With prolonged incubation (up to 24 h) the oligomeric peak became the dominating molecular species. In contrast, in the presence of ONE, a ∼2000 oligomeric peak was exclusively observed after 15 min of incubation and this peak remained constant with prolonged incubation. Western blot analysis of HNE-induced α-synuclein oligomers showed the presence of monomers (15 kDa), SDS-resistant low molecular (30-160 kDa) and high molecular weight oligomers (≥260 kDa), indicating that the oligomers consisted of both covalent and non-covalent protein. In contrast, ONE-induced α-synuclein oligomers only migrated as covalent cross-linked high molecular-weight material (≥300 kDa). Both circular dichroism (CD) and Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy showed that the formation of HNE- and ONE-induced oligomers coincided with a spectral change from random coil to β-sheet. However, ONE-induced α-synuclein oligomers exhibited a slightly higher degree of β-sheet. Taken together, our results indicate that both HNE and ONE induce a change from random coil to β-sheet structure that coincides with the formation of α-synuclein oligomers; albeit through different kinetic pathways depending on the degree of cross-linking.

    Topics: Aldehydes; alpha-Synuclein; Chromatography, Gel; Circular Dichroism; Humans; Kinetics; Molecular Weight; Oxidation-Reduction; Protein Multimerization; Protein Structure, Secondary; Recombinant Proteins

2015
The molecular mechanism behind reactive aldehyde action on transmembrane translocations of proton and potassium ions.
    Free radical biology & medicine, 2015, Volume: 89

    Membrane transporters are involved in enormous number of physiological and pathological processes. Under oxidative stress they become targets for reactive oxygen species and its derivatives which cause protein damage and/or influence protein function(s). The molecular mechanisms of this interaction are poorly understood. Here we describe a novel lipid-mediated mechanism by which biologically important reactive aldehydes (RAs; 4-hydroxy-2-nonenal, 4-hydroxy-2-hexenal and 4-oxo-2-nonenal) modify the activity of several membrane transporters. We revealed that investigated RAs covalently modify the membrane lipid phosphatidylethanolamine (PE), that lead to the formation of different membrane active adducts. Molecular dynamic simulations suggested that anchoring of PE-RA adducts in the lipid headgroup region is primarily responsible for changes in the lipid membrane properties, such as membrane order parameter, boundary potential and membrane curvature. These caused the alteration of transport activity of mitochondrial uncoupling protein 1, potassium carrier valinomycin and ionophore CCCP. In contrast, neither direct protein modification by RAs as previously shown for cytosolic proteins, nor its insertion into membrane bilayers influenced the studied transporters. Our results explain the diversity of aldehyde action on cell proteins and open a new field in the investigation of lipid-mediated effects of biologically important RAs on membrane receptors, channels and transporters.

    Topics: Aldehydes; Fatty Acids; Humans; Ion Channels; Lipid Bilayers; Mitochondrial Proteins; Molecular Dynamics Simulation; Potassium; Protein Conformation; Protons; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Uncoupling Protein 1

2015
Alkylation damage by lipid electrophiles targets functional protein systems.
    Molecular & cellular proteomics : MCP, 2014, Volume: 13, Issue:3

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions.

    Topics: Aldehydes; Alkylation; Cell Line; Electrons; Glutathione; Humans; Lipids; Protein Interaction Maps; Proteins; Proteome

2014
Advanced glycation end products of beta2-microglobulin in uremic patients as determined by high resolution mass spectrometry.
    Journal of pharmaceutical and biomedical analysis, 2014, Volume: 91

    By using a high resolution top-down and bottom-up approach we identified and characterized the AGEs of beta2-microglobulin (β2-m) formed by incubating the protein in the presence of glucose and of the main reactive carbonyl species. Glucose induced glycation on the N-terminal residue, while glyoxal (GO) and methylglyoxal (MGO) covalently reacted with Arg3. Carboxymethyl (CM-R) and imidazolinone (R-GO) derivatives were identified in the case of GO and carboxyethyl arginine (CE-R) and methyl-imidazolinone (R-MGO) for MGO. Interestingly, α,β-unsaturated aldehydes [4-hydroxy-2-nonenal (HNE); 4-oxo-2-nonenal (ONE); acrolein (ACR)] did not induce any covalent modifications up to 100μM. The different reactivity of β2-m towards the different RCS was then rationalized by molecular modeling studies. The MS method was then applied to fully characterize the AGEs of β2-m isolated from the urine of uremic subjects. CM-R, CE-R and R-MGO were easily identified on Arg3 and their relative abundance in respect to the native protein determined by a semi-quantitative approach. Overall, the AGEs content of urinary β2-m ranged from 0.2 to 1% in uremic subjects. The results here reported offer novel insights and technical achievements for a potential biological role of AGEs-β2-m in pathological conditions.

    Topics: Acrolein; Aldehydes; Arginine; beta 2-Microglobulin; Glucose; Glycation End Products, Advanced; Glyoxal; Humans; Mass Spectrometry; Pyruvaldehyde; Uremia

2014
Application of screening experimental designs to assess chromatographic isotope effect upon isotope-coded derivatization for quantitative liquid chromatography-mass spectrometry.
    Analytical chemistry, 2014, Jul-15, Volume: 86, Issue:14

    Isotope effect may cause partial chromatographic separation of labeled (heavy) and unlabeled (light) isotopologue pairs. Together with a simultaneous matrix effect, this could lead to unacceptable accuracy in quantitative liquid chromatography-mass spectrometry assays, especially when electrospray ionization is used. Four biologically relevant reactive aldehydes (acrolein, malondialdehyde, 4-hydroxy-2-nonenal, and 4-oxo-2-nonenal) were derivatized with light or heavy (d3-, (13)C6-, (15)N2-, or (15)N4-labeled) 2,4-dinitrophenylhydrazine and used as model compounds to evaluate chromatographic isotope effects. For comprehensive assessment of retention time differences between light/heavy pairs under various gradient reversed-phase liquid chromatography conditions, major chromatographic parameters (stationary phase, mobile phase pH, temperature, organic solvent, and gradient slope) and different isotope labelings were addressed by multiple-factor screening using experimental designs that included both asymmetrical (Addelman) and Plackett-Burman schemes followed by statistical evaluations. Results confirmed that the most effective approach to avoid chromatographic isotope effect is the use of (15)N or (13)C labeling instead of deuterium labeling, while chromatographic parameters had no general influence. Comparison of the alternate isotope-coded derivatization assay (AIDA) using deuterium versus (15)N labeling gave unacceptable differences (>15%) upon quantifying some of the model aldehydes from biological matrixes. On the basis of our results, we recommend the modification of the AIDA protocol by replacing d3-2,4-dinitrophenylhydrazine with (15)N- or (13)C-labeled derivatizing reagent to avoid possible unfavorable consequences of chromatographic isotope effects.

    Topics: Acrolein; Aldehydes; Animals; Carbon Isotopes; Chromatography, Liquid; Deuterium; Female; Isotope Labeling; Malondialdehyde; Mice, Inbred Strains; Nitrogen Isotopes; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Temperature

2014
Oxidative stress-mediated aldehyde adduction of GRP78 in a mouse model of alcoholic liver disease: functional independence of ATPase activity and chaperone function.
    Free radical biology & medicine, 2014, Volume: 73

    Pathogenesis in alcoholic liver disease (ALD) is complicated and multifactorial but clearly involves oxidative stress and inflammation. Currently, conflicting reports exist regarding the role of endoplasmic reticulum (ER) stress in the etiology of ALD. The glucose-regulated protein 78 (GRP78) is the ER homolog of HSP70 and plays a critical role in the cellular response to ER stress by serving as a chaperone assisting protein folding and by regulating the signaling of the unfolded protein response (UPR). Comprising three functional domains, an ATPase, a peptide-binding, and a lid domain, GRP78 folds nascent polypeptides via the substrate-binding domain. Earlier work has indicated that the ATPase function of GRP78 is intrinsically linked and essential to its chaperone activity. Previous work in our laboratory has indicated that GRP78 and the UPR are not induced in a mouse model of ALD but that GRP78 is adducted by the lipid electrophiles 4-hydroxynonenal (4-HNE) and 4-oxononenal (4-ONE) in vivo. As impairment of GRP78 has the potential to contribute to pathogenesis in ALD, we investigated the functional consequences of aldehyde adduction on GRP78 function. Identification of 4-HNE and 4-ONE target residues in purified human GRP78 revealed a marked propensity for Lys and His adduction within the ATPase domain and a relative paucity of adduct formation within the peptide-binding domain. Consistent with these findings, we observed a concomitant dose-dependent decrease in ATP-binding and ATPase activity without any discernible impairment of chaperone function. Collectively, our data indicate that ATPase activity is not essential for GRP78-mediated chaperone activity and is consistent with the hypothesis that ER stress does not play a primary initiating role in the early stages of ALD.

    Topics: Adenosine Triphosphatases; Aldehydes; Amino Acid Sequence; Animals; Computer Simulation; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Heat-Shock Proteins; Humans; Inflammation; Liver Diseases, Alcoholic; Male; Mice; Mice, Inbred C57BL; Models, Molecular; Oxidative Stress; Protein Binding; Protein Folding; Protein Structure, Tertiary; Unfolded Protein Response

2014
Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers.
    Chemico-biological interactions, 2013, Feb-25, Volume: 202, Issue:1-3

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is widely used for treatment of patients with solid tumors formed in various organs including the lung, prostate and cervix, but is much less sensitive in colon and breast cancers. One major factor implicated in the ineffectiveness has been suggested to be acquisition of the CDDP resistance. Here, we established the CDDP-resistant phenotypes of human colon HCT15 cells by continuously exposing them to incremental concentrations of the drug, and monitored expressions of aldo-keto reductases (AKRs) 1A1, 1B1, 1B10, 1C1, 1C2 and 1C3. Among the six AKRs, AKR1C1 and AKR1C3 are highly induced with the CDDP resistance. The resistance lowered the sensitivity toward cellular damages evoked by oxidative stress-derived aldehydes, 4-hydroxy-2-nonenal and 4-oxo-2-nonenal that are detoxified by AKR1C1 and AKR1C3. Overexpression of AKR1C1 or AKR1C3 in the parental HCT15 cells mitigated the cytotoxicity of the aldehydes and CDDP. Knockdown of both AKR1C1 and AKR1C3 in the resistant cells or treatment of the cells with specific inhibitors of the AKRs increased the sensitivity to CDDP toxicity. Thus, the two AKRs participate in the mechanism underlying the CDDP resistance probably via detoxification of the aldehydes resulting from enhanced oxidative stress. The resistant cells also showed an enhancement in proteolytic activity of proteasome accompanied by overexpression of its catalytic subunits (PSMβ9 and PSMβ10). Pretreatment of the resistant cells with a potent proteasome inhibitor Z-Leu-Leu-Leu-al augmented the CDDP sensitization elicited by the AKR inhibitors. Additionally, the treatment of the cells with Z-Leu-Leu-Leu-al and the AKR inhibitors induced the expressions of the two AKRs and proteasome subunits. Collectively, these results suggest the involvement of up-regulated AKR1C1, AKR1C3 and proteasome in CDDP resistance of colon cancers and support a chemotherapeutic role for their inhibitors.

    Topics: 20-Hydroxysteroid Dehydrogenases; 3-Hydroxysteroid Dehydrogenases; Aldehydes; Aldo-Keto Reductase Family 1 Member C3; Cell Line, Tumor; Cisplatin; Colonic Neoplasms; Drug Resistance, Neoplasm; HeLa Cells; HT29 Cells; Humans; Hydroxyprostaglandin Dehydrogenases; MCF-7 Cells; Oxidative Stress; Proteasome Endopeptidase Complex

2013
Strecker-type degradation of phenylalanine initiated by 4-oxo-2-alkenals in comparison to that initiated by 2,4-alkadienals, 4,5-epoxy-2-alkenals, or 4-hydroxy-2-nonenal.
    Journal of agricultural and food chemistry, 2013, Oct-30, Volume: 61, Issue:43

    The conversion of phenylalanine to phenylacetaldehyde as a consequence of its reaction with 4-oxo-2-alkenals was studied both to characterize the reaction pathway and to compare the reactivities and kinetic constants of oxoalkenals with those of other lipid oxidation products: 2,4-alkadienals, 4,5-epoxy-2-alkenals, and 4-hydroxy-2-nonenal. Oxoalkenals produced the Strecker aldehyde through imine formation, which was then decarboxylated and hydrolyzed. In the course of the reaction the lipid was converted into an unsaturated hydroxylamine that eventually cycled to 2-alkylpyrrole. The Ea of phenylacetaldehyde formation in the presence of oxoalkenals was 55-64 kJ/mol. This Ea was similar to the Ea determined for the other tertiary lipid oxidation products assayed (58-67 kJ/mol), but higher than the Ea determined for alkadienals (28-38 kJ/mol). However, this difference in Ea only correlated with the amount of phenylacetaldehyde produced at 37 °C. At higher temperatures, 4-oxo-2-nonenal was the lipid-derived carbonyl compound that produced the highest amount of the Strecker aldehyde, therefore pointing to this oxoalkenal as the most efficient Strecker aldehyde forming compound derived from lipids. For this reason, oxoalkenals should be expected to play a significant role in reactions in which Strecker aldehydes are recognized intermediates, as occurs in the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP).

    Topics: Acetaldehyde; Aldehydes; Lipid Peroxidation; Maillard Reaction; Oxidation-Reduction; Phenylalanine

2013
Fragmentation of a linoleate-derived γ-hydroperoxy-α,β-unsaturated epoxide to γ-hydroxy- and γ-oxo-alkenals involves a unique pseudo-symmetrical diepoxycarbinyl radical.
    Free radical biology & medicine, 2012, Feb-01, Volume: 52, Issue:3

    Many of the pathological effects of lipid peroxidation are mediated by aldehydes generated through fragmentation of lipid peroxides. Among these aldehydes, the γ-hydroxy- and γ-oxo-α,β-alkenals, e.g., 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE), are especially prone to modifying proteins and DNA through covalent adduction. In addition the "mirror image" γ-hydroxy- and γ-oxo-α,β-alkenal phospholipids can serve as high-affinity ligands for biological receptors triggering pathology. Therefore, the mechanisms by which these aldehydes are generated in vivo are under intense scrutiny. We now report observations supporting the intermediacy of a unique pseudo-symmetrical diepoxycarbinyl radical that accounts for the coproduction of HNE, ONE, and their mirror image analogues 9-hydroxy-12-oxo-10(E)-dodecenoic acid and 9-keto-12-oxo-10-dodecenoic acid upon fragmentation of 13-hydroperoxy-cis-9,10-epoxyoctadeca-11-enoic acid.

    Topics: Aldehydes; Epoxy Compounds; Free Radicals; Hydrolysis; Iron; Linoleic Acids; Lipid Peroxidation; Oxidation-Reduction; Tandem Mass Spectrometry

2012
Dietary regulation of catabolic disposal of 4-hydroxynonenal analogs in rat liver.
    Free radical biology & medicine, 2012, Mar-15, Volume: 52, Issue:6

    Our previous work in perfused rat livers has demonstrated that 4-hydroxynonenal (HNE) is catabolized predominantly via β oxidation. Therefore, we hypothesized that perturbations in β oxidation, such as diet-altered fatty acid oxidation activity, could lead to changes in HNE levels. To test our hypothesis, we (i) developed a simple and sensitive GC/MS method combined with mass isotopomer analysis to measure HNE and HNE analogs, 4-oxononenal (ONE) and 1,4-dihydroxynonene (DHN), and (ii) investigated the effects of four diets (standard, low-fat, ketogenic, and high-fat mix) on HNE, ONE, and DHN concentrations in rat livers. Our results showed that livers from rats fed the ketogenic diet or high-fat mix diet had high ω-6 polyunsaturated fatty acid concentrations and markers of oxidative stress. However, high concentrations of HNE (1.6 ± 0.5 nmol/g) and ONE (0.9 ± 0.2 nmol/g) were found only in livers from rats fed the high-fat mix diet. Livers from rats fed the ketogenic diet had low HNE (0.8 ± 0.1 nmol/g) and ONE (0.4 ± 0.07 nmol/g), similar to rats fed the standard diet. A possible explanation is that the predominant pathway of HNE catabolism (i.e., β oxidation) is activated in the liver by the ketogenic diet. This is consistent with a 10-fold decrease in malonyl-CoA in livers from rats fed a ketogenic diet compared to a standard diet. The accelerated catabolism of HNE lowers HNE and HNE analog concentrations in livers from rats fed the ketogenic diet. On the other hand, rats fed the high-fat mix diet had high rates of lipid synthesis and low rates of fatty acid oxidation, resulting in the slowing down of the catabolic disposal of HNE and HNE analogs. Thus, decreased HNE catabolism from a high-fat mix diet induces high concentrations of HNE and HNE analogs. The results of this work suggest a potential causal relationship to metabolic syndrome induced by Western diets (i.e., high-fat mix), as well as the effects of a ketogenic diet on the catabolism of lipid peroxidation products in liver.

    Topics: Aldehydes; Alkenes; Animals; Biomarkers; Diet, High-Fat; Diet, Ketogenic; Dietary Fats, Unsaturated; Glutathione; Lipid Peroxidation; Liver; Male; Mass Spectrometry; Oxidation-Reduction; Oxidative Stress; Rats; Rats, Wistar

2012
Trans-4-oxo-2-nonenal potently alters mitochondrial function.
    Free radical biology & medicine, 2011, Jan-15, Volume: 50, Issue:2

    Alzheimer disease elevates lipid peroxidation in the brain and data indicate that the resulting lipid-aldehydes are pathological effectors of lipid peroxidation. The disposition of 4-substituted nonenals derived from arachidonate (20:4, n-6) and linoleate (18:2, n-6) oxidation is modulated by their protein adduction targets, their metabolism, and the nature of the 4-substitutent. Trans-4-oxo-2-nonenal (4-ONE) has a higher toxicity in some systems than the more commonly studied trans-4-hydroxy-2-nonenal (HNE). In this work, we performed a structure-function analysis of 4-hydroxy/oxoalkenal upon mitochondrial endpoints. We tested the hypotheses that 4-ONE, owing to a highly reactive nature, is more toxic than HNE and that HNE toxicity is enantioselective. We chose to study freshly isolated brain mitochondria because of the role of mitochondrial dysfunction in neurodegenerative disorders. Whereas there was little effect related to HNE chirality, our data indicate that in the mitochondrial environment, the order of toxic potency under most conditions was 4-ONE>HNE. 4-ONE uncoupled mitochondrial respiration at a concentration of 5μM and inhibited aldehyde dehydrogenase 2 (ALDH2) activity with an IC(50) of approximately 0.5μM. The efficacy of altering mitochondrial endpoints was ALDH2 inhibition>respiration=mitochondrial swelling=ALDH5A inhibition>GSH depletion. Thiol-based alkenal scavengers, but not amine-based scavengers, were effective in blocking the effects of 4-ONE upon respiration. Quantum mechanical calculations provided insights into the basis for the elevated reactivity of 4-ONE>HNE. Our data demonstrate that 4-ONE is a potent effector of lipid peroxidation in the mitochondrial environment.

    Topics: Aldehyde Dehydrogenase; Aldehydes; Animals; Brain; Cell Respiration; Glutathione; Lipid Peroxidation; Mitochondria; Mitochondrial Swelling; Oxidation-Reduction; Rats; Rats, Sprague-Dawley

2011
The lipid peroxidation products 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote the formation of α-synuclein oligomers with distinct biochemical, morphological, and functional properties.
    Free radical biology & medicine, 2011, Feb-01, Volume: 50, Issue:3

    Oxidative stress has been implicated in the etiology of neurodegenerative disorders with α-synuclein pathology. Lipid peroxidation products such as 4-oxo-2-nonenal (ONE) and 4-hydroxy-2-nonenal (HNE) can covalently modify and structurally alter proteins. Herein, we have characterized ONE- or HNE-induced α-synuclein oligomers. Our results demonstrate that both oligomers are rich in β-sheet structure and have a molecular weight of about 2000 kDa. Atomic force microscopy analysis revealed that ONE-induced α-synuclein oligomers were relatively amorphous, with a diameter of 40-80 nm and a height of 4-8 nm. In contrast, the HNE-induced α-synuclein oligomers had a protofibril-like morphology with a width of 100-200 nm and a height of 2-4 nm. Furthermore, neither oligomer type polymerized into amyloid-like fibrils despite prolonged incubation. Although more SDS and urea stable, because of a higher degree of cross-linking, ONE-induced α-synuclein oligomers were less compact and more sensitive to proteinase K treatment. Finally, both ONE- and HNE-induced α-synuclein oligomers were cytotoxic when added exogenously to a neuroblastoma cell line, but HNE-induced α-synuclein oligomers were taken up by the cells to a significantly higher degree. Despite nearly identical chemical structures, ONE and HNE induce the formation of off-pathway α-synuclein oligomers with distinct biochemical, morphological, and functional properties.

    Topics: Aldehydes; alpha-Synuclein; Cell Survival; Humans; Inclusion Bodies; Lipid Peroxidation; Protein Multimerization; Protein Stability; Protein Structure, Secondary; Tumor Cells, Cultured

2011
The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase.
    Chemico-biological interactions, 2011, May-30, Volume: 191, Issue:1-3

    Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE.

    Topics: Alcohol Oxidoreductases; Aldehydes; Animals; Cloning, Molecular; Drosophila melanogaster; Drosophila Proteins; Lipid Metabolism; Neurodegenerative Diseases; Oxidation-Reduction; Oxidative Stress; Recombinant Proteins

2011
Structure-activity analysis of diffusible lipid electrophiles associated with phospholipid peroxidation: 4-hydroxynonenal and 4-oxononenal analogues.
    Chemical research in toxicology, 2011, Mar-21, Volume: 24, Issue:3

    Electrophile-mediated disruption of cell signal-ing is involved in the pathogenesis of several diseases including atherosclerosis and cancer. Diffusible and membrane bound lipid electrophiles are known to modify DNA and protein substrates and modulate cellular pathways including ER stress, antioxidant response, DNA damage, heat shock, and apoptosis. Herein we report on a structure-activity relationship for several electrophilic analogues of 4-hydroxynonenal (HNE) and 4-oxononenal (ONE) with regard to toxicity and anti-inflammatory activity. The analogues studied were the oxidation products of HNE and ONE, HNEA/ONEA, the in vivo hydrolysis products of oxidized phosphatidylcholine, COOH-HNE/COOH-ONE, and their methyl esters, COOMe-HNE/ONE. The reactivity of each compound toward N-acetylcysteine was determined and compared to the toxicity toward a human colorectal carcinoma cell line (RKO) and a human monocytic leukemia cell line (THP-1). Further analysis was performed in differentiated THP-1 macrophages to assess changes in macrophage activation and pro-inflammatory signaling in response to each lipid electrophile. HNE/ONE analogues inhibited THP-1 macrophage production of the pro-inflammatory cytokines, IL-6, IL-1β, and TNFα, after lipopolysaccharide (LPS)/IFNγ activation. Inhibition of cytokine production was observed at submicromolar concentrations of several analogues with as little as 30 min of exposure. Phagocytosis of fluorescent beads was also inhibited by lipid electrophile treatment. Lipid electrophiles related to HNE/ONE are both toxic and anti-inflammatory, but the anti-inflammatory effects in human macrophages are observed at nontoxic concentrations. Neither toxicity nor anti-inflammatory activity are strongly correlated to the reactivity of the model nucleophile, N-acetylcysteine.

    Topics: Aldehydes; Cell Line, Tumor; Chromatography, High Pressure Liquid; Diffusion; Humans; Hydrolysis; Interferon-gamma; Interleukin-1beta; Interleukin-6; Lipid Peroxidation; Lipopolysaccharides; Oxidation-Reduction; Phagocytosis; Phosphatidylcholines; Structure-Activity Relationship; Tumor Necrosis Factor-alpha

2011
Quantitation of mercapturic acid conjugates of 4-hydroxy-2-nonenal and 4-oxo-2-nonenal metabolites in a smoking cessation study.
    Free radical biology & medicine, 2010, Jan-01, Volume: 48, Issue:1

    The breakdown of polyunsaturated fatty acids (PUFAs) under conditions of oxidative stress results in the formation of lipid peroxidation (LPO) products. These LPO products such as 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) can contribute to the development of cardiovascular and neurodegenerative diseases and cancer. Conjugation with glutathione, followed by further metabolism to mercapturic acid (MA) conjugates, can mitigate the effects of these LPO products in disease development by facilitating their excretion from the body. We have developed a quantitative method to simultaneously assess levels of 4-oxo-2-nonen-1-ol (ONO)-MA, HNE-MA, and 1,4-dihydroxy-2-nonene (DHN)-MA in human urine samples utilizing isotope-dilution mass spectrometry. We are also able to detect 4-hydroxy-2-nonenoic acid (HNA)-MA, 4-hydroxy-2-nonenoic acid lactone (HNAL)-MA, and 4-oxo-2-nonenoic acid (ONA)-MA with this method. The detection of ONO-MA and ONA-MA in humans is significant because it demonstrates that HNE/ONE branching occurs in the breakdown of PUFAs and suggests that ONO may contribute to the harmful effects currently associated with HNE. We were able to show significant decreases in HNE-MA, DHN-MA, and total LPO-MA in a group of seven smokers upon smoking cessation. These data demonstrate the value of HNE and ONE metabolites as in vivo markers of oxidative stress.

    Topics: Acetylcysteine; Adolescent; Adult; Aged; Aldehydes; Female; Humans; Male; Middle Aged; Oxidative Stress; Reference Values; Smoking Cessation; Young Adult

2010
Xanthine oxidase-derived reactive oxygen species mediate 4-oxo-2-nonenal-induced hepatocyte cell death.
    Toxicology and applied pharmacology, 2010, Dec-01, Volume: 249, Issue:2

    Among the aldehydes derived from lipid peroxidation, there have been several reports concerning the toxicity of 4-hydroxy-2-nonenal (4-HNE), whereas little information is available about 4-oxo-2-nonenal (4-ONE). In the present study, we examined the effects of 4-HNE and 4-ONE on the cell viability of primary rat hepatocyte cultures. At concentrations of 5, 10, and 20 μM, 4-HNE had no significant effect on the cell viability of primary rat hepatocytes cultures, whereas 4-ONE potently decreased the cell viability in a dose-dependent manner (5-20 μM, 23-69% inhibition). The TUNEL assay showed that 4-ONE causes apoptosis in the cells. 4-ONE also increased 2',7'-dichlorofluorescein-fluorescence intensity from 2',7'-dichlorodihydrofluorescein, an indicator of reactive oxygen species (ROS) generation. Allopurinol, a xanthine oxidase (XO) inhibitor, diminished the 4-ONE-induced increase in the 2',7'-dichlorofluorescein-fluorescence intensity and the decrease in viability, indicating the role of XO in mediating 4-ONE-induced cell death. These observations suggest that 4-ONE has the potential to induce liver cell death via XO-derived ROS generation.

    Topics: Aldehydes; Animals; Apoptosis; Dose-Response Relationship, Drug; Hepatocytes; In Vitro Techniques; Rats; Reactive Oxygen Species; Xanthine Oxidase

2010
Mass spectrometric characterization of modifications to angiotensin II by lipid peroxidation products, 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenal.
    Chemical research in toxicology, 2010, Nov-15, Volume: 23, Issue:11

    The octapeptide angiotensin II (Ang II; Asp(1)-Arg(2)-Val(3)-Tyr(4)-Ile(5)-His(6)-Pro(7)-Phe(8)) is the primary active hormone of the renin/angiotensin system (RAS) and has been implicated in various cardiovascular diseases. Numerous structure-activity relationship studies have identified Asp(1), Arg(2), and His(6) of Ang II to be critical for its biological activity and receptor binding. From the reactions of Ang II with lipid peroxidation-derived aldehydes, 4-oxo-2(E)-nonenal (ONE) or 4-hydroxy-2(E)-nonenal (HNE), we have identified the major modifications to the N-terminus, Asp(1), Arg(2), and His(6) of Ang II by liquid chromatography/mass spectrometry (LC/MS) and matrix-assisted laser desorption ionization-time-of-flight/MS (MALDI-TOF/MS). The identities of ONE- and HNE-modified Ang II were confirmed by tandem mass spectrometry (MS/MS) and postsource decay (PSD)-TOF/MS before and after the reaction with sodium borohydride. In the reaction with ONE, a pyruvamide-Ang II that formed via oxidative decarboxylation of N-terminal Asp was detected as the most abundant product after 48 h of incubation. It was followed by Arg-modified [Arg(2)(ONE-H(2)O)]-Ang II and the N-terminal-modified 4-ketoamide form of [N-ONE]-Ang II. The Michael addition products of [His(6)(HNE)]-Ang II were the most abundant products in the beginning of the reaction with HNE, followed by the dehydrated Michael addition products of [His(6)(HNE-H(2)O)]-Ang II. [His(6)(HNE)]-Ang II was dehydrated to [His(6)(HNE-H(2)O)]-Ang II during the prolonged incubation, and [His(6)(HNE-H(2)O)]-Ang II became the major products after 7 days. The model reactions of N(α)-tert-butoxycarbonyl (tBoc)-Arg with ONE and tBoc-His with HNE were performed and compared with the Ang II reaction. tBoc-Arg readily reacted with ONE to produce a compound analogous to [Arg(2)(ONE-H(2)O)]-Ang II, which confirmed Arg as one of the important target nucleophiles of ONE. However, tBoc-His exclusively formed a Michael addition product upon the reaction with HNE. The unexpected formation of [His(6)(HNE-H(2)O)]-Ang II can be explained by the proximity of His(6) to C-terminal carboxylate in the specific conformation of Ang II, which facilitates the dehydration of Michael addition products. Therefore, our results suggest a possible discrepancy in the adduction chemistry of ONE and HNE for model amino acids and endogenous bioactive peptides, which is governed by the microenvironment of peptides, such as the specific amino acid sequ

    Topics: Aldehydes; Amino Acid Sequence; Angiotensin II; Borohydrides; Chromatography, High Pressure Liquid; Lipid Peroxidation; Oligopeptides; Oxidation-Reduction; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Time Factors

2010
In vitro and in silico characterization of peroxiredoxin 6 modified by 4-hydroxynonenal and 4-oxononenal.
    Chemical research in toxicology, 2008, Volume: 21, Issue:12

    Peroxiredoxin 6 (PRX6) belongs to the 1-Cys class of peroxiredoxins and is recognized as an important antioxidant protein in tissues such as cardiac muscle, skin, and lung. Preliminary in vivo proteomic data have revealed that PRX6 is adducted by 4-hydroxynonenal (4HNE) in the livers of rats chronically fed an ethanol-containing diet. The goals of this study were to evaluate the in vitro effect of aldehyde adduction on PRX6 peroxidase activity, identify specific sites of aldehyde modification using mass spectrometry, and predict conformational changes due to adduction using molecular modeling. PRX6 was found to be resistant to inactivation via aldehyde modification; however, Western blots of adducted protein revealed that both 4HNE and 4-oxononenal (4ONE) caused extensive cross-linking, resulting in high molecular mass species. Tandem mass spectrometry (ESI-LC-MS/MS) analysis demonstrated multiple sites of modification, but adduction of the active site Cys47 was not observed. Molecular modeling simulations indicated that adduction at Cys91 results in a change in protein active site conformation, which potentially restricts access of 4-HNE to Cys47. The Cys91-Lys209 cross-linked adducts could provide the conformational changes required to inactivate the protein by either restricting access to electrophiles or preventing important amino acid interactions within the catalytic triad.

    Topics: Aldehydes; Animal Feed; Animals; Antioxidants; Computational Biology; Cross-Linking Reagents; Ethanol; Liver; Male; Models, Molecular; Molecular Conformation; Oxidation-Reduction; Peroxiredoxin VI; Rats; Rats, Sprague-Dawley; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry

2008
Mercapturic acid conjugates of 4-hydroxy-2-nonenal and 4-oxo-2-nonenal metabolites are in vivo markers of oxidative stress.
    The Journal of biological chemistry, 2008, Jun-20, Volume: 283, Issue:25

    Oxidative stress-induced lipid peroxidation leads to the formation of cytotoxic and genotoxic 2-alkenals, such as 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). Lipid-derived reactive aldehydes are subject to phase-2 metabolism and are predominantly found as mercapturic acid (MA) conjugates in urine. This study shows evidence for the in vivo formation of ONE and its phase-1 metabolites, 4-oxo-2-nonen-1-ol (ONO) and 4-oxo-2-nonenoic acid (ONA). We have detected the MA conjugates of HNE, 1,4-dihydroxy-2-nonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), the lactone of HNA, ONE, ONO, and ONA in rat urine by liquid chromatography-tandem mass spectrometry comparison with synthetic standards prepared in our laboratory. CCl(4) treatment of rats, a widely accepted animal model of acute oxidative stress, resulted in a significant increase in the urinary levels of DHN-MA, HNA-MA lactone, ONE-MA, and ONA-MA. Our data suggest that conjugates of HNE and ONE metabolites have value as markers of in vivo oxidative stress and lipid peroxidation.

    Topics: Acetylcysteine; Aldehydes; Animals; Biomarkers; Carbon Tetrachloride; Chromatography, Liquid; Lactones; Linoleic Acid; Lipid Peroxidation; Mass Spectrometry; Models, Chemical; Oxidative Stress; Rats; Rats, Inbred F344

2008
Mass spectrometric evidence for long-lived protein adducts of 4-oxo-2-nonenal.
    Redox report : communications in free radical research, 2007, Volume: 12, Issue:1

    Substantial work has been carried out to elucidate the nature of protein modification by 4-hydroxy-2-nonenal (HNE) and its relatives. Its keto cousin, 4-oxo-2-nonenal (ONE), which arises from linoleic acid oxidation independently of HNE, was previously reported to form Michael adducts with His and Cys that can subsequently, in part, condense with Lys residues to give imidazolylpyrrole cross-links. Despite mass spectrometric evidence also for ONE-Lys Michael adducts, the latter do not accumulate in solution. A long-lived adduct that has the same mass as the ONE Lys Michael adduct is suggested instead to be the isomeric 4-ketoamide that arises, along with other adducts, from the reversibly-formed ONE Lys Schiff base. The Lys-ketoamide and His-Lys imidazolylpyrrole cross-links appear to be unusually prominent markers of stable protein modification by ONE.

    Topics: Aldehydes; Kinetics; Linoleic Acid; Mass Spectrometry; Models, Molecular; Molecular Conformation; Proteins; Schiff Bases

2007
Residue-specific adduction of tubulin by 4-hydroxynonenal and 4-oxononenal causes cross-linking and inhibits polymerization.
    Chemical research in toxicology, 2007, Volume: 20, Issue:8

    The modification of proteins by lipid aldehydes produced in cells undergoing oxidative stress has been proposed as an important event that contributes to the pathology of numerous diseases. In this context, the alpha,beta-unsaturated aldehydes 4-hydroxynonenal (4-HNE) and 4-oxononenal (4-ONE) generated during membrane lipid peroxidation have been shown to adduct and inactivate numerous proteins. We report here that purified bovine brain tubulin modified with physiologically relevant concentrations of 4-HNE or 4-ONE results in significant protein cross-linking and marked inhibition of the functional capacity of tubulin polymerization. Comparative analysis demonstrated that 4-ONE is a much more potent cross-linker and inhibitor of tubulin assembly than 4-HNE. Additional experiments revealed the unique property of 4-ONE, initiation of depolymerization of intact microtubules. LC-MS/MS analysis demonstrated that Cys 347alpha, Cys 376alpha, and Cys 303beta are consistently modified by 4-HNE. The identification of target residues within tubulin modified by 4-ONE was not successful, and this was attributed to the marked tubulin cross-linking that occurred immediately after addition of 4-ONE. The modification of Lys residues by reductive propylation demonstrated that the majority of 4-HNE and 4-ONE adducts involve Lys residues, suggesting that tubulin cross-links are Lys-dependent. Taken together, these data suggest a mechanistic basis for the impairment of tubulin function by 4-HNE and 4-ONE produced as a consequence of diseases associated with chronic oxidative stress.

    Topics: Aldehydes; Animals; Brain; Cattle; Cross-Linking Reagents; Cysteine; Electrophoresis, Gel, Two-Dimensional; Lysine; Mass Spectrometry; Oxidative Stress; Polymers; Tubulin

2007
Inhibition of human mitochondrial aldehyde dehydrogenase by 4-hydroxynon-2-enal and 4-oxonon-2-enal.
    Chemical research in toxicology, 2006, Volume: 19, Issue:1

    Previous studies found the lipid peroxidation product 4-hydroxynon-2-enal (4HNE) to be both a substrate and an inhibitor of mitochondrial aldehyde dehydrogenase (ALDH2). Inhibition of the enzyme by 4HNE was demonstrated kinetically to be reversible at low micromolar aldehyde but may involve covalent modification at higher concentrations. Structurally analogous to 4HNE is the lipid peroxidation product 4-oxonon-2-enal (4ONE), which is more reactive than 4HNE toward protein nucleophiles. The goal of this work was to determine whether 4ONE is a substrate or inhibitor of human ALDH2 (hALDH2) and elucidate the mechanism of enzyme inhibition by 4HNE and 4ONE. Both 4ONE and its glutathione conjugate were found to be substrates for the enzyme in the presence of NAD. At low concentrations of 4ONE (< or = 10 microM), hALDH2 catalyzed the oxidation of 4ONE to 4-oxonon-2-enoic acid (4ONEA) with a maximal yield of 5.2 mol 4ONEA produced per mol of enzyme (monomer). However, subsequent analysis of hALDH2 activity toward propionaldehyde revealed that both 4ONE and the oxidation product, 4ONEA, were potent, irreversible inhibitors of the enzyme. In contrast, inhibition of hALDH2 by a high concentration of 4HNE (i.e., 50 microM) was primarily reversible. The reactivity of 4ONEA toward glutathione was measured and found to be comparable to that of 4HNE, indicating that the 4ONE-oxidation product is a reactive electrophile. hALDH2/NAD was incubated with 4HNE, 4ONE, and 4ONEA, and mass spectral analysis of tryptic peptides revealed covalent modification of an hALDH2 active site peptide by both 4ONE and 4ONEA. These data demonstrate that hALDH2 catalyzes the oxidation of 4ONE to 4ONEA; however, the product 4ONEA is a reactive electrophile. Furthermore, both 4ONE and 4ONEA are potent, irreversible inhibitors of the enzyme.

    Topics: Aldehyde Dehydrogenase; Aldehyde Dehydrogenase, Mitochondrial; Aldehydes; Alkylation; Binding Sites; Enzyme Inhibitors; Fatty Acids, Unsaturated; Glutathione; Humans; Kinetics; Mitochondria; NAD; Oxidation-Reduction; Peptide Fragments; Peptide Mapping; Recombinant Proteins; Trypsin

2006
Novel electrochemical approach to enhanced toxicity of 4-oxo-2-nonenal vs. 4-hydroxy-2-nonenal (role of imine): oxidative stress and therapeutic modalities.
    Medical hypotheses, 2006, Volume: 67, Issue:1

    Reactive oxygen species (ROS) and oxidative stress (OS) have received increasing attention in connection with illness, disease, and aging. The OS results in widespread attack of body constituents, with unsaturated lipids, leading to hydroperoxides, being a focus of research. Subsequent decomposition yields various functionalized aldehydes, including 4-hydroxy-2-nonenal (HNE). OS linked to HNE is associated with various illnesses. Recently, much attention has been devoted to 4-oxo-2-nonenal (ONE), also a product from lipid hydroperoxide decomposition. ROS and OS are increasingly implicated in the mode of action of drugs and toxins. The preponderance of bioactive substances or their metabolites incorporate electron transfer (ET) functionalities, among which are imines or iminiums. Also, in this category are the less well-known alpha-dicarbonyls. ET moieties undergo redox cycling accompanied by generation of ROS. Electrochemistry, a neglected area, can provide valuable insight. If the reduction potential is more positive than -0.5 V, then ET reactions are a possibility in vivo. Both HNE and ONE participate in Michael addition reactions with protein nucleophiles. The process occurs at a faster rate with ONE due mainly to the high reactivity toward His and Cys. The greater toxicity of ONE vs. HNE may partly reflect this difference. Also, ONE forms Schiff base (imine) at a faster rate than HNE, which also may contribute to the difference in toxicity. Electrochemistry of alpha-dicarbonyls and their imine derivatives can elucidate basic mechanisms. Methylglyoxal possesses a reduction potential of -0.18 V, amenable to ET in vivo. Since ONE is a vinylog of methylglyoxal, redox cycling should be even more facile. Another model is diacetyl whose reduction potential is also favorable. In contrast, crotonaldehyde, a model for the HNE vinylog, is characterized by a quite negative reduction potential, unsuitable for ET; acrolein is included. Imines of alpha-dicarbonyls serve as models for Schiff bases from ONE. The diimines in acid have reduction potentials of -0.45 to -0.49 V. Diacetyl monoxime, an oximino analog of the vinylogous ONE mono Schiff base, possesses a similar value. The ONE vinylogs should exhibit even better electrochemical characteristics. Thus, these neglected electrochemical properties can help rationalize the greater toxicity of ONE vs. HNE. Toxicity of the aldehydes may be countered by various approaches: formation of non-toxic imines, carboxylic acid

    Topics: Acrolein; Aldehydes; Biochemistry; Electrochemistry; Electron Transport; Imines; Models, Biological; Models, Chemical; Oxidation-Reduction; Oxidative Stress; Reactive Oxygen Species

2006
Convenient and efficient syntheses of 4-hydroxy-2(E)-nonenal and 4-oxo-2(E)-nonenal.
    Lipids, 2006, Volume: 41, Issue:9

    Lipid peroxidation products 4-hydroxy-2(E)-nonenal (HNE) and 4-oxo-2(E)-nonenal (ONE) were conveniently synthesized using Wittig and Horner-Wardsworth-Emmons (HWE) reaction. Wittig or HWE reaction between an easily prepared phosphorane or phosphonate with glyoxal dimethyl acetal gave a protected 4-oxo-2(E)-nonenal. Hydrolysis gave 4-oxo-2(E)-nonenal, whereas reduction followed by hydrolysis gave 4-hydroxy-2(E)-nonenal.

    Topics: Aldehydes; Hydrolysis; Molecular Structure; Oxidation-Reduction

2006
4-Hydroperoxy-2-nonenal-induced formation of 1,N2-etheno-2'-deoxyguanosine adducts.
    Chemical research in toxicology, 2005, Volume: 18, Issue:4

    Analysis of the reaction between 4-hydroperoxy-2-nonenal (HPNE) and 2'-deoxyguanosine (dGuo) by liquid chromatography/mass spectrometry (LC/MS) revealed the formation of 1,N2-etheno-dGuo as well as heptanone-etheno-dGuo and trace amounts of dihydroxyheptane-etheno-dGuo. Identities of the dGuo adducts were confirmed by comparison with authentic standards. The minor dihydroxyheptane-etheno-dGuo adducts could be generated from 2,3-epoxy-4-hydroxynonanal (EHN), the epoxidation product of 4-hydroxy-2-nonenal (HNE). An LC/MS method was developed for the analysis of EHN. No EHN was detected by LC/MS during the decomposition of HPNE. Therefore, the dihydroxyheptane-etheno-dGuo adducts are either generated from a direct reaction between HPNE and dGuo or from another intermediate that cannot be detected by LC/MS. In addition, no HNE-derived hydroxypropano-dGuo adducts were observed. On the basis of these findings, we conclude that HPNE, a primary product of lipid peroxidation, is a major precursor to the formation of 1,N2-etheno-dGuo. We propose that it arises from the reaction of dGuo and HPNE through the intermediate formation of a cyclic hydroxy-ethano-epoxide derivative. The minor amounts of heptanone-ethano-dGuo adducts that were formed from HPNE in the absence of vitamin C suggest that heptanone-etheno-dGuo can be generated directly from HPNE without the intermediate formation of ONE. Therefore, HPNE can be considered as another lipid hydroperoxide-derived bifunctional electrophile with the potential for biological activities that are similar to HNE and ONE.

    Topics: Aldehydes; Deoxyguanosine; DNA Adducts; Epoxy Compounds

2005
Modification of heat shock protein 90 by 4-hydroxynonenal in a rat model of chronic alcoholic liver disease.
    The Journal of pharmacology and experimental therapeutics, 2005, Volume: 315, Issue:1

    Lipid peroxidation during oxidative stress leads to increased concentrations of thiol-reactive alpha,beta-unsaturated aldehyde, including 4-hydroxy-2-nonenal (4-HNE) and 4-oxo-2-nonenal (4-ONE). These aldehydes have a documented ability to disrupt protein function following adduct formation with specific residues. Therefore, to identify 4-HNE-modified proteins in a model of ethanol-induced oxidative stress, a proteomic approach was applied to liver fractions prepared from rats fed a combination high-fat/ethanol diet. The results revealed that essential 90-kDa heat shock protein (Hsp90) was consistently modified by 4-HNE in the alcohol-treated animals. In vitro chaperoning experiments using firefly luciferase as a client protein were then performed to assess the functional effect of 4-HNE modification on purified recombinant human Hsp90, modified with concentrations of this aldehyde ranging from 23 to 450 microM. Modification of Hsp90 with 4-ONE also led to significant inhibition of the chaperone. Because 4-HNE and 4-ONE react selectively with Cys, a thiol-specific mechanism of inhibition was suggested by these data. Therefore, thiol sensitivity was confirmed following treatment of Hsp90 with the specific thiol modifier N-ethylmaleimide, which resulted in more than 99% inactivation of the chaperone by concentrations as low as 6 microM (1:1 M ratio). Finally, tryptic digest of 4-HNE-modified Hsp90 followed by liquid chromatography/tandem mass spectrometry peptide analysis identified Cys 572 as a site for 4-HNE modification. The results presented here thus establish that 4-HNE consistently modifies Hsp90 in a rat model of alcohol-induced oxidative stress and that the chaperoning activity of this protein is subject to dysregulation through thiol modification.

    Topics: Aldehydes; Animals; Disease Models, Animal; HSP90 Heat-Shock Proteins; Lipid Peroxidation; Liver Diseases, Alcoholic; Male; Oxidative Stress; Rats; Rats, Sprague-Dawley

2005
4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal.
    Chemical research in toxicology, 2005, Volume: 18, Issue:8

    Electrophilic aldehydes, generated from oxidation of polyunsaturated fatty acyl chains under conditions of oxidative stress, bind to proteins and polynucleotides and can lead to cell death. 4-Hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) have been shown here to be toxic to human neuroblastoma cells in culture at low micromolar concentrations. ONE is 4-5 times more neurotoxic at concentrations near the threshold of lethality. The reactions of these two aldehydes with two model proteins, ribonuclease A and beta-lactoglobulin, and their Lys epsilon-dimethylamino derivatives, have been followed spectrophotometrically. On the basis of t(1/2) measurements for the disappearance of the alpha,beta-unsaturated chromophore, ONE is 6-31 times more reactive with these proteins. The fastest reaction of ONE with proteins involves Schiff base formation at Lys epsilon-amino groups, whereas Schiff base formation is not spectroscopically apparent for HNE. Detailed kinetic studies of the initial reactions of HNE and ONE have been carried out with amino acids and amino acid surrogates. Whereas the reactions with imidazole and thiol nucleophiles involve straightforward Michael adduct formation, kinetics analyses reveal the reversibility of both the HNE Michael adduction of amines and the ONE Schiff base adduction of amines. Although ONE is more reactive than HNE toward conjugate addition of imidazole and thiol nucleophiles, it is less reactive than HNE toward Lys/amine Michael adduction. The greater neurotoxicity of ONE could reflect in part the different reactivity characteristics of ONE as compared to HNE.

    Topics: Aldehydes; Butylamines; Cell Line; Cell Survival; Cysteine; Cysteine Proteinase Inhibitors; Histidine; Humans; Immunohistochemistry; Indicators and Reagents; Kinetics; Lysine; Neurons; Neurotoxicity Syndromes; Oxidative Stress; Proteins; Schiff Bases; Spectrophotometry, Ultraviolet

2005
Covalent adduction of nucleophilic amino acids by 4-hydroxynonenal and 4-oxononenal.
    Chemico-biological interactions, 2003, Feb-01, Volume: 143-144

    Peroxidation of polyunsaturated fatty acids yields the lipid aldehydes 4-hydroxynonenal (4HNE) and 4-oxononenal (4ONE). Adduction of proteins by 4HNE is thought to be involved in the pathogenesis of several diseases. At the present time, the reactivity of 4ONE toward proteins is unknown. The purpose of this study was to identify amino acids that react with 4HNE and 4ONE, characterize the chemical structure of the adduct, and determine the preference for amino acid modification. Model peptides containing one or more nucleophilic residues (i.e. Arg, Cys, His, Met and Lys) were reacted with 4HNE and 4ONE at pH 7.4, 37 degrees C and analyzed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS). Post-source decay (PSD) analysis was used to confirm peptide modification. The bimolecular rate constant for adduction of amino acids and peptides by 4HNE and 4ONE was measured. Results of this work indicate that Cys, His and Lys are modified by 4HNE. In contrast, 4ONE was found to react with Arg, Cys, His and Lys. The predominant adduct resulting from modification of peptides by 4HNE or 4ONE had a mass of 156 or 154 Da (respectively), indicating that both lipid aldehydes react primarily via Michael addition with peptide nucleophiles to yield a covalent adduct. Reactivity of amino acids toward 4HNE was found to have the following order of potency: Cys>>His>Lys. Preference for the reaction of amino acid nucleophiles with 4ONE was determined to have the following order: Cys>>His>Lys>Arg. The presence of an Arg on a Cys-containing peptide increased the reaction rate with 4HNE and 4ONE by a factor of approximately 5-6 compared to the Cys nucleophile alone. Rate constants for the modification of Cys by 4HNE and 4ONE were determined to be 1.21 and 186 M(-1) s(-1) (respectively), indicating a >150-fold difference in reactivity between the lipid aldehydes toward Cys. Spontaneous conjugation of glutathione (GSH) with the lipid aldehydes was found to occur with rate constants of 1.33 and 145 M(-1) s(-1) for 4HNE and 4ONE (respectively), demonstrating a 110-fold difference in the rate of GSH modification between the two compounds. Results of the present study indicate that both 4HNE and 4ONE react with amino acid nucleophiles via Michael addition with the following order of potency: Cys>>His>Lys. However, the reactivity of these lipid aldehydes toward amino acid nucleophiles differs qualitatively with Arg being a target for 4ONE but not 4HNE and quan

    Topics: Aldehydes; Amino Acids; Kinetics; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2003
Mass spectroscopic characterization of protein modification by 4-hydroxy-2-(E)-nonenal and 4-oxo-2-(E)-nonenal.
    Chemical research in toxicology, 2003, Volume: 16, Issue:7

    The modification of proteins by 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) was investigated using mass spectroscopic approaches. Electrospray ionization MS analysis of HNE- and ONE-treated myoglobin and apomyoglobin revealed that the latter more "open" protein structure resulted in more extensive modification. Reductive methylation of Lys residues halved the extent of modification, implicating the importance of adduction of HNE and ONE to both His and Lys residues. HPLC-MS/MS analysis of tryptic and chymotryptic peptides of HNE- or ONE-adducted apomyoglobin was aided by the knowledge of structures previously elucidated through model reactions. In the case of HNE, the adducts detected were the HNE-His Michael adduct (on H24, H36, H64, and H113), its dehydrated form (on H36), and the HNE-Lys pyrrole adduct (on K16, K42, K45, K145, and K147). In the case of the more reactive ONE, the adducts detected were the ONE-His Michael adduct (on H24), the ONE-Lys pyrrolinone adduct (on K16 and K145), and the ONE-His-Lys pyrrole cross-link (linking K16 to H24 in the C(5) peptide). Although previous analyses of tryptic peptides yielded findings about the nature of His modification, the current chymotryptic peptide analysis produced the first structural characterization of Lys modification on intact proteins by HNE and ONE using mass spectrometry.

    Topics: Aldehydes; Amino Acid Sequence; Apoproteins; Chymotrypsin; Cross-Linking Reagents; Mass Spectrometry; Molecular Sequence Data; Myoglobin; Peptide Fragments; Proteins; Pyrroles; Trypsin

2003
Covalent modification of amino acid nucleophiles by the lipid peroxidation products 4-hydroxy-2-nonenal and 4-oxo-2-nonenal.
    Chemical research in toxicology, 2002, Volume: 15, Issue:11

    Lipid peroxidation yields the aldehydes 4-hydroxynonenal (4HNE) and 4-oxononenal (4ONE). Protein adduction by 4HNE is thought to be involved in the pathogenesis of several diseases. Currently, the reactivity of 4ONE toward proteins is unknown. The purpose of this study was to identify amino acids that react with 4HNE and 4ONE, characterize the chemical structure of the adduct, and determine the preference for amino acid modification. Model peptides containing one or more nucleophilic residues (i.e., Arg, Cys, His, Met, and Lys) were reacted with 4HNE and 4ONE and analyzed using matrix-assisted laser desorption/ionization mass spectrometry. Post-source decay analysis was used to confirm peptide modification. The bimolecular rate constant for adduction of amino acids and peptides by 4HNE and 4ONE was measured. Results of this work indicate that Cys, His, and Lys are modified by 4HNE and 4ONE. In addition, Arg was adducted by 4ONE. The predominant adduct resulting from modification of peptides by 4HNE or 4ONE had a mass of 156 or 154 Da (respectively), indicating that adduction occurs via Michael addition. Reactivity of amino acids toward 4HNE and 4ONE was found to have the following order: Cys >> His > Lys (> Arg for 4ONE). The presence of an Arg on a Cys-containing peptide increased the reaction rate with 4HNE and 4ONE by a factor of approximately 5-6 compared to the Cys nucleophile alone. Rate constants determined for the modification of Cys by the lipid aldehydes demonstrated a >100-fold difference in reactivity between 4HNE and 4ONE toward Cys. Results of the present study indicate that both 4HNE and 4ONE modify amino acid nucleophiles; however, the reactivity between these two lipid aldehydes differs both qualitatively and quantitatively.

    Topics: Aldehydes; Amino Acids; Arginine; Cysteine; Histidine; Kinetics; Lipid Peroxidation; Lysine; Protein Processing, Post-Translational; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Substrate Specificity

2002
Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins.
    Science (New York, N.Y.), 2001, Jun-15, Volume: 292, Issue:5524

    Epidemiological data suggest that dietary antioxidants play a protective role against cancer. This has led to the proposal that dietary supplementation with antioxidants such as vitamin C (vit C) may be useful in disease prevention. However, vit C has proved to be ineffective in cancer chemoprevention studies. In addition, concerns have been raised over potentially deleterious transition metal ion-mediated pro-oxidant effects. We have now determined that vit C induces lipid hydroperoxide decomposition to the DNA-reactive bifunctional electrophiles 4-oxo-2-nonenal, 4,5-epoxy-2(E)-decenal, and 4-hydroxy-2-nonenal. The compound 4,5-Epoxy-2(E)-decenal is a precursor of etheno-2'-deoxyadenosine, a highly mutagenic lesion found in human DNA. Vitamin C-mediated formation of genotoxins from lipid hydroperoxides in the absence of transition metal ions could help explain its lack of efficacy as a cancer chemoprevention agent.

    Topics: Aldehydes; Antioxidants; Ascorbic Acid; Buffers; Copper; Cyclooxygenase 1; Cyclooxygenase 2; DNA Adducts; DNA Damage; Epoxy Compounds; Ferrous Compounds; Humans; Isoenzymes; Linoleic Acids; Lipid Peroxides; Membrane Proteins; Metals; Mutagens; Oxidants; Oxidation-Reduction; Prostaglandin-Endoperoxide Synthases

2001