4-hydroxy-2-nonenal has been researched along with 3-deoxyglucosone* in 2 studies
2 other study(ies) available for 4-hydroxy-2-nonenal and 3-deoxyglucosone
Article | Year |
---|---|
Mechanism of the inhibitory effect of OPB-9195 [(+/-)-2-isopropylidenehydrazono-4-oxo-thiazolidin-5-yla cetanilide] on advanced glycation end product and advanced lipoxidation end product formation.
The accumulation in uremic plasma of reactive carbonyl compounds (RCO) derived from both carbohydrates and lipids ("carbonyl stress") contributes to uremic toxicity by accelerating the advanced glycation and lipoxidation of proteins. It was previously demonstrated that OPB-9195 [(+/-)-2-isopropylidenehydrazono-4-oxo- thiazolidin-5-ylacetanilide] inhibited the in vitro formation of advanced glycation end products (AGE) in uremic plasma. This study was designed to elucidate the mechanism of action of OPB-9195 by further delineating the AGE and advanced lipoxidation end product (ALE) precursors targeted by this drug. The inhibitory effects of OPB-9195 on the formation of two AGE (N:epsilon-carboxymethyllysine and pentosidine) on bovine serum albumin incubated with various AGE precursors were examined. Inhibition of N:epsilon-carboxymethyllysine and pentosidine formation with OPB-9195 was more efficient than with aminoguanidine. OPB-9195 also proved effective in blocking the carbonyl amine chemical processes involved in the formation of two ALE (malondialdehyde-lysine and 4-hydroxynonenal-protein adduct). The efficiency of OPB-9195 was similar to that of aminoguanidine. When glucose-based peritoneal dialysis fluid was incubated in the presence of OPB-9195, a similar inhibition of AGE formation was observed. The direct effect of OPB-9195 on major glucose-derived RCO in peritoneal dialysis fluids was then evaluated. The effects of OPB-9195 could be accounted for by its ability to trap RCO. The concentrations of three major glucose-derived RCO (glyoxal, methylglyoxal, and 3-deoxy-glucosone) were significantly lower in the presence of OPB-9195 than in its absence. Aminoguanidine had a similar effect. In conclusion, OPB-9195 inhibits both AGE and ALE formation, probably through its ability to trap RCO. OPB-9195 might prove to be a useful tool to inhibit some of the effects of RCO-related uremic toxicity. Topics: Aldehydes; Arachidonic Acid; Arginine; Deoxyglucose; Dialysis Solutions; Glycation End Products, Advanced; Glyoxal; Guanidines; Lipid Metabolism; Lysine; Malondialdehyde; Oxidation-Reduction; Peritoneal Dialysis; Prodrugs; Pyruvaldehyde; Thiadiazoles; Thiazolidines | 2000 |
Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes.
4-Hydroxynonenal, a product of oxidative degradation of unsaturated lipids, is an endogenous reactive alpha,beta-unsaturated aldehyde with numerous biological activities. 4-Hydroxynonenal rapidly inactivated glutathione reductase in an NADPH-dependent reaction. Inactivation appears to involve the initial formation of an enzyme-inactivator complex, K(D) = 0.5 microM, followed by the inactivation reaction, k = 1.3 x 10(-2) min(-1). alpha,beta-Unsaturated aldehydes such as acrolein, crotonaldehyde, and cinnamaldehyde also inactivated glutathione reductase, although rates varied widely. Inactivation of glutathione reductase by alpha,beta-unsaturated aldehydes was followed by slower NADPH-independent reactions that led to formation of nonfluorescent cross-linked products, accompanied by loss of lysine and histidine residues. Other reactive endogenous aldehydes such as methylglyoxal, 3-deoxyglucosone, and xylosone inactivated glutathione reductase by an NADPH-independent mechanism, with methylglyoxal being the most reactive. However, 2-oxoaldehydes were much less effective than 4-hydroxynonenal. Inactivation of glutathione reductase by these 2-oxoaldehydes was followed by slower reactions that led to the formation of fluorescent cross-linked products over a period of several weeks. These changes were accompanied by loss of arginine residues. Thus, the sequence of events is different for inactivation and modification of glutathione reductase by alpha,beta-unsaturated aldehydes compared with 2-oxoaldehydes with respect to kinetics, NADPH requirements, fluorescence changes, and loss of amino acid residues. The ability of 4-hydroxynonenal at low concentrations to inactivate glutathione reductase, a central antioxidant enzyme, suggests that oxidative degradation of unsaturated lipids may initiate a positive feedback loop that enhances the potential for oxidative damage. Topics: Acrolein; Aldehydes; Amino Acids; Deoxyglucose; Enzyme Activation; Glutathione Reductase; Ketoses; Pyruvaldehyde; Spectrometry, Fluorescence | 1997 |