4-hydroxy-2-nonenal has been researched along with 3-4-dihydroxyphenylacetaldehyde* in 6 studies
1 review(s) available for 4-hydroxy-2-nonenal and 3-4-dihydroxyphenylacetaldehyde
Article | Year |
---|---|
Lysines, Achilles' heel in alpha-synuclein conversion to a deadly neuronal endotoxin.
Alpha-synuclein aggregation is associated with Parkinson's disease and other neurodegenerative disorders termed synucleinopathies. The sequence of alpha-synuclein has a remarkable amount of lysines, which may be a target for modifications by several aldehydes found at increased concentration in parkinsonian brains. The involved aldehydes are the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde, the lipid peroxidation products 4-hydroxynonenal, acrolein and malondialdehyde, and advanced glycation end-products. Moreover, both relative expression levels and enzymatic activity of aldehyde dehydrogenases, which are responsible for aldehydes detoxification in cells, are altered in Parkinson's disease brains. The effects of aldehyde modifications can include: (i) a perturbation in the equilibrium of cytosolic and membrane-bound alpha-synuclein, that may alter protein function and lead to aggregation; (ii) the reduction of alpha-synuclein ubiquitination and SUMOylation, affecting its cellular localization and clearance; (iii) a decreased susceptibility to cleavage at specific sites by extracellular proteases; (iv) a reduced availability of identified lysine acetylation sites; (v) the production of toxic oligomeric alpha-synuclein-aldehyde species, able to damage lipid membranes and transmissible from unhealthy to healthy neurons. All of these observations point to a complex interaction between alpha-synuclein and aldehydes in brain, which may lead to the accumulation of dysfunctional alpha-synuclein and its oligomerization. Topics: 3,4-Dihydroxyphenylacetic Acid; Aldehydes; alpha-Synuclein; Brain; Dopamine; Humans; Lysine; Metabolism; Neurodegenerative Diseases; Neurons | 2016 |
5 other study(ies) available for 4-hydroxy-2-nonenal and 3-4-dihydroxyphenylacetaldehyde
Article | Year |
---|---|
Biochemical characterization of the catecholaldehyde reactivity of L-carnosine and its therapeutic potential in human myocardium.
Oxidative deamination of norepinephrine (NE) and dopamine (DA) by monoamine oxidase (MAO) generates the catecholaldehydes 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) and 3,4-dihydroxyphenylacetaldehyde (DOPAL), respectively, and H Topics: 3,4-Dihydroxyphenylacetic Acid; Aged; Aldehydes; Carnosine; Catechols; Cysteine; Glutathione; Humans; Middle Aged; Mitochondria; Myocardium; Oxidation-Reduction | 2019 |
Benomyl, aldehyde dehydrogenase, DOPAL, and the catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease.
The dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is detoxified mainly by aldehyde dehydrogenase (ALDH). We find that the fungicide benomyl potently and rapidly inhibits ALDH and builds up DOPAL in vivo in mouse striatum and in vitro in PC12 cells and human cultured fibroblasts and glial cells. The in vivo results resemble those noted previously with knockouts of the genes encoding ALDH1A1 and 2, a mouse model of aging-related Parkinson's disease (PD). Exposure to pesticides that inhibit ALDH may therefore increase PD risk via DOPAL buildup. This study lends support to the "catecholaldehyde hypothesis" that the autotoxic dopamine metabolite DOPAL plays a pathogenic role in PD. Topics: 3,4-Dihydroxyphenylacetic Acid; Aldehyde Dehydrogenase; Aldehydes; Animals; Antifungal Agents; Benomyl; Cell Line; Enzyme Inhibitors; Humans; Lipid Peroxidation; Mice; Parkinson Disease; PC12 Cells; Rats | 2014 |
Products of oxidative stress inhibit aldehyde oxidation and reduction pathways in dopamine catabolism yielding elevated levels of a reactive intermediate.
Dopamine (DA) has been implicated as an endogenous neurotoxin to explain the selective neurodegeneration as observed for Parkinson's disease (PD). In addition, oxidative stress and lipid peroxidation are hypothesized culprits in PD pathogenesis. DA undergoes catabolism by monoamine oxidase (MAO) to 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is further oxidized to 3,4-dihydroxyphenylacetic acid (DOPAC) via aldehyde dehydrogenase (ALDH). As a minor and compensatory metabolic pathway, DOPAL can be reduced to 3,4-dihydroxyphenylethanol (DOPET) via cytosolic aldehyde or aldose reductase (AR). Previous studies have found DOPAL to be significantly more toxic to DA cells than DA and that the major lipid peroxidation products, that is, 4-hydroxynonenal (4HNE) and malondialdehyde (MDA), potently inhibit DOPAL oxidation via ALDH. The hypothesis of this work is that lipid peroxidation products inhibit DOPAL oxidation, yielding aberrant levels of the toxic aldehyde intermediate. To test this hypothesis, nerve growth factor-differentiated PC6-3 cells were used as a model for DA neurons. Cell viability in the presence of 4HNE and MDA (2-100 microM) was measured by MTT assay, and it was found that only 100 microM 4HNE exhibited significant cytotoxicity. Treatment of cells with varying concentrations of 4HNE and MDA resulted in reduced DOPAC production and significant elevation of DOPAL levels, suggesting inhibition of ALDH. In cells treated with 4HNE that exhibited elevated DOPAL, there was a significant increase in DOPET. However, elevated DOPET was not observed for the cells treated with MDA, suggesting MDA to be an inhibitor of AR. Using isolated cytosolic AR, it was found that MDA but not 4HNE inhibited reductase activity toward DOPAL, surprisingly. These data demonstrate that the oxidative stress products 4HNE and MDA inhibit the aldehyde biotransformation step of DA catabolism yielding elevated levels of the endogenous neurotoxin DOPAL, which may link oxidative stress to selective neurodegeneration as seen in PD. Topics: 3,4-Dihydroxyphenylacetic Acid; Aldehyde Reductase; Aldehydes; Animals; Dopamine; Lipid Peroxidation; Malondialdehyde; Oxidation-Reduction; Oxidative Stress; PC12 Cells; Phenylethyl Alcohol; Rats | 2009 |
Inhibition of the oxidative metabolism of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism, by 4-hydroxy-2-nonenal.
Recent evidence indicates a role for oxidative stress and resulting products, e.g. 4-hydroxy-2-nonenal (4HNE) in the pathogenesis of Parkinson's disease (PD). 4HNE is a known inhibitor of mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme very important to the dopamine (DA) metabolic pathway. DA undergoes monoamine oxidase-catalyzed oxidative deamination to 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is metabolized primarily to 3,4-dihydroxyphenylacetic acid (DOPAC) via ALDH2. The biotransformation of DOPAL is critical as previous studies have demonstrated this DA-derived aldehyde to be a reactive electrophile and toxic to dopaminergic cells. Therefore, 4HNE produced via oxidative stress may inhibit ALDH2-mediated oxidation of the endogenous neurotoxin DOPAL. To test this hypothesis, ALDH2 in various model systems was treated with 4HNE and activity toward DOPAL measured. Incubation of human recombinant ALDH2 with 4HNE (1.5-30 microM) yielded inhibition of activity toward DOPAL. Furthermore, ALDH2 in rat brain mitochondrial lysate as well as isolated rat brain mitochondria was also sensitive to the lipid peroxidation product at low micromolar, as evident by a decrease in the rate of DOPAL to DOPAC conversion measured using HPLC. Taken together, these data indicate that 4HNE at low micromolar inhibits mitochondrial biotransformation of DOPAL to DOPAC, and generation of the lipid peroxidation product may represent a mechanism yielding aberrant levels of DOPAL, thus linking oxidative stress to the uncontrolled production of an endogenous neurotoxin relevant to PD. Topics: 3,4-Dihydroxyphenylacetic Acid; Aldehyde Dehydrogenase; Aldehyde Reductase; Aldehydes; Animals; Chromatography, High Pressure Liquid; Dopamine; Half-Life; Humans; Mitochondria; Oxidation-Reduction; Oxidative Stress; Rats; Rats, Sprague-Dawley | 2007 |
Lipid peroxidation products inhibit dopamine catabolism yielding aberrant levels of a reactive intermediate.
Recent work indicates that oxidative stress is a factor in Parkinson's disease (PD); however, it is unknown how this condition causes selective dopaminergic cell death. The neurotransmitter dopamine (DA) has been implicated as an endogenous neurotoxin to explain the selective neurodegeneration. DA undergoes catabolism by monoamine oxidase (MAO) to the reactive intermediate 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is further oxidized to 3,4-dihydroxyphenylacetic (DOPAC) acid via mitochondrial aldehyde dehydrogenase (ALDH). Previous studies found DOPAL to be more toxic than DA, and the major lipid peroxidation products, that is, 4-hydroxynonenal (4HNE) and malondialdehyde (MDA), potently inhibit ALDH. The hypothesis of this work is that lipid peroxidation products inhibit DOPAL oxidation, yielding aberrant levels of the reactive aldehyde intermediate. Treatment of striatal synaptosomes with 2-100 microM 4HNE or 2-50 microM MDA impaired DOPAL oxidation, resulting in elevated [DOPAL]. The aberrant concentration of DOPAL yielded an increase in protein modification by the DA-derived aldehyde, evident via staining of proteins with nitroblue tetrazolium (NBT). Pretreatment of synaptosomes with an MAO inhibitor significantly decreased NBT staining. On the basis of NBT staining, the order of protein reactivity for DA and metabolites was found to be DOPAL>>DOPAC>DA. Mass spectrometric analysis of a model peptide reacted with DOPAL revealed the adduct to be a Schiff base product. In summary, these data demonstrate the sensitivity of DA catabolism to the lipid peroxidation products 4HNE and MDA even at low, physiologic levels and suggest a mechanistic link between oxidative stress and generation of aberrant levels of an endogenous and protein reactive dopaminergic toxin relevant to PD. Topics: 3,4-Dihydroxyphenylacetic Acid; Aldehydes; Animals; Corpus Striatum; Cross-Linking Reagents; Dopamine; Dose-Response Relationship, Drug; Drug Antagonism; Enzyme Inhibitors; Lipid Peroxidation; Malondialdehyde; Oxidative Stress; Rats; Rats, Sprague-Dawley; Synaptosomes | 2007 |