4-hydroxy-2-nonenal and 2-tert-butylhydroquinone

4-hydroxy-2-nonenal has been researched along with 2-tert-butylhydroquinone* in 3 studies

Other Studies

3 other study(ies) available for 4-hydroxy-2-nonenal and 2-tert-butylhydroquinone

ArticleYear
Aldo-keto reductases mediate constitutive and inducible protection against aldehyde toxicity in human neuroblastoma SH-SY5Y cells.
    Neurochemistry international, 2013, Volume: 62, Issue:1

    Reactive aldehydes including methyl glyoxal, acrolein and 4-hydroxy-2-nonenal (4-HNE) have been implicated in the progression of neurodegenerative diseases. The reduction of aldehydes to alcohols by the aldo-keto reductase (AKR) family of enzymes may represent an important detoxication route within neuronal cells. In this study, the ability of AKR enzymes to protect human neuroblastoma SH-SY5Y cells against reactive aldehydes was assessed. Using gene-specific RNA interference (RNAi), we report that AKR7A2 makes a significant contribution to the reduction of methyl glyoxal in SH-SY5Y cells, with its knockdown altering the IC(50) from 410 to 25.8μM, and that AKR1C3 contributes to 4-HNE reduction, with its knockdown lowering the IC(50) from 1.25 to 0.58μM. In addition, we have shown that pretreatment of cells with sub-lethal concentrations of 4-HNE or methyl glyoxal leads to a significant increase in IC(50) when cells are exposed to higher concentrations of the toxic aldehyde. The IC(50) for methyl glyoxal increased from 410μM to 1.9mM, and the IC(50) for 4-HNE increased from 120 to 690nM. To investigate this protection, we show that pretreatment of cells with the AKR inhibitor sorbinil lead to decreased resistance to aldehydes. We show that AKR1C can be induced 8-fold in SH-SY5Y cells by treatment with sub-lethal concentrations of methyl glyoxal, and 5-fold by 4-HNE treatment. AKR1B is not induced by methyl glyoxal but is induced 10-fold by 4-HNE treatment. Furthermore, we have shown that this adaptive response can also be induced using the chemoprotective agent tert-butyl hydroquinone (t-BHQ), and that this also evokes an increase in the expression and activity of AKR1B and AKR1C. These findings highlight the potential for the interventional upregulation of AKR via non-toxic derivatives or natural compounds as a novel therapeutic approach towards the detoxication of aldehydes, with the aim of halting the progression of aldehyde-dependent neurodegenerative diseases.

    Topics: Adaptation, Physiological; Alcohol Oxidoreductases; Aldehyde Reductase; Aldehydes; Aldo-Keto Reductases; Blotting, Western; Cell Line, Tumor; Coloring Agents; Enzyme Induction; Humans; Hydroquinones; Inactivation, Metabolic; Nerve Tissue Proteins; Pyruvaldehyde; RNA Interference; Tetrazolium Salts; Thiazoles

2013
Preventive effect of tert-butylhydroquinone on cisplatin-induced nephrotoxicity in rats.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2011, Volume: 49, Issue:10

    Cis-diamminedichloroplatinum II (CDDP)-induced nephrotoxicity is associated with the overproduction of reactive oxygen species. tert-Butylhydroquinone (tBHQ) is a compound widely used as food antioxidant. The purpose of this study was to investigate the ability of tBHQ to prevent the nephrotoxic effect of CDDP in rats as well as the mechanisms involved. Thirty-six Wistar rats divided in the following groups were used: control, tBHQ (12.5mg/kg), CDDP (7.5mg/kg) and tBHQ+CDDP. Twenty-four h urine was collected at the beginning and at the end of the experiment and the rats were sacrificed 72h after CDDP-administration. Histological studies were performed and markers of renal function and oxidative/nitrosative stress were measured. In addition, the activity of the following antioxidant enzymes was measured: glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione reductase (GR) and glutathione-S-transferase (GST). CDDP-induced renal dysfunction, structural damage and oxidative/nitrosative were prevented by tBHQ. In addition, tBHQ completely prevented the CDDP-induced fall in GPx and GST activities. In conclusion, the present study indicates that the antioxidant activity of tBHQ is associated with its nephroprotective effect against CDDP-induced acute kidney injury in rats.

    Topics: Aldehydes; Animals; Antioxidants; Catalase; Cisplatin; Glutathione Peroxidase; Glutathione Reductase; Glutathione Transferase; Hydroquinones; Immunohistochemistry; Kidney Diseases; Male; Malondialdehyde; Oxidative Stress; Random Allocation; Rats; Rats, Wistar; Superoxide Dismutase

2011
Stabilization of transcription factor Nrf2 by tBHQ prevents oxidative stress-induced amyloid beta formation in NT2N neurons.
    Biochimie, 2010, Volume: 92, Issue:3

    Alzheimer's disease (AD) a progressive neurodegenerative disorder of later life, is characterized by brain deposition of amyloid beta-protein (Abeta) plaques, accumulation of intracellular neurofibrillatory tangles, synaptic loss and neuronal cell death. There is significant evidence that oxidative stress is a critical event in the pathogenesis of AD. In the present study Abeta formation was induced in NT2N neurons, one of the most appropriate cell line models in AD. Our results indicate that oxidative stress resulting from the treatment of H(2)O(2)/FeSO(4) and/or 4-hydroxy-2-noenal (HNE) can be inhibited in the presence of tBHQ, a known inducer of nuclear factor-erythroid 2 related factor 2 (Nrf2) in NT2N neurons and can therefore be used to elucidate the relationship between oxidative stress, Abeta formation and Nrf2. The role of Nrf2 was confirmed using retinoic acid as an inhibitor of Nrf2. It provides the first documentation that tBHQ not only protects the neurons against cell death but also decreases amyloid beta formation. Moreover, the results indicate that oxidative stress fosters Abeta formation in NT2N neurons, creating a vicious neurodegenerative loop.

    Topics: Aldehydes; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antineoplastic Agents; Antioxidants; Astrocytes; Caspase 3; Cell Line; Cysteine Proteinase Inhibitors; Enzyme Activation; Ferrous Compounds; Glutathione; Humans; Hydrogen Peroxide; Hydroquinones; Neurons; NF-E2-Related Factor 2; Oxidants; Oxidative Stress; Tretinoin

2010