4-hydroxy-2-nonenal and 2--7--dichlorofluorescein

4-hydroxy-2-nonenal has been researched along with 2--7--dichlorofluorescein* in 3 studies

Other Studies

3 other study(ies) available for 4-hydroxy-2-nonenal and 2--7--dichlorofluorescein

ArticleYear
Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule?
    Toxicology in vitro : an international journal published in association with BIBRA, 2010, Volume: 24, Issue:6

    The aim of this study was to investigate whether carbon black (CB) nanoparticles might induce toxicity to monocytic cells in vitro via an oxidative stress mechanism involving formation of the lipid peroxidation product 4-hydroxynonenal (4-HNE) and the subsequent role of 4-HNE in inducing further cytotoxic effects. ROS production in cells by CB nanoparticles was shown by the oxidation of DCFH after a short time exposure. These particles induced the formation of 4-HNE-protein adducts and significant modification of glutathione content corresponding to an increase of oxidized glutathione form (GSSG) and a decrease of total glutathione (GSX) content. These results attest to an oxidative stress induced by the carbon black nanoparticles, although no induction of HO-1 protein expression was detected. Concerning the effects of a direct exposure to 4-HNE, our results showed that 4-HNE is not cytotoxic for concentrations lower than 12.5 microM. By contrast, it provokes a very high cytotoxicity for concentrations above 25 microM. An induction of HO-1 expression was observed from concentrations above 5 microM of 4-HNE. Finally, glutathione content decreased significantly from 5 microM of 4-HNE but no modification was observed under this concentration. The discrepancy between effects of carbon black nanoparticles and 4-HNE on the intracellular markers of oxidative stress suggests that 4-HNE is not directly implied in the signalling of oxidative toxicity of nanoparticles but is an effective biomarker of oxidative effects of nanoparticles.

    Topics: Aldehydes; Biomarkers; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Fluoresceins; Heme Oxygenase-1; Humans; Lipid Peroxidation; Monocytes; Nanoparticles; Oxidation-Reduction; Oxidative Stress; Soot

2010
Anti-CD11d antibody treatment reduces free radical formation and cell death in the injured spinal cord of rats.
    Journal of neurochemistry, 2005, Volume: 94, Issue:5

    Treatment with a monoclonal antibody (mAb) against the CD11d subunit of the leukocyte integrin CD11d/CD18 after spinal cord injury (SCI) decreases intraspinal inflammation and oxidative damage, improving neurological function in rats. In this study we tested whether the anti-CD11d mAb treatment reduces intraspinal free radical formation and cell death after SCI. Using clip-compression SCI in rats, reactive oxygen species (ROS) generated in injured spinal cord were detected using 2',7'-dichlorofluorescin-diacetate and hydroethidine as fluorescent probes. ROS in the injured cord increased significantly after SCI; anti-CD11d mAb treatment significantly reduced this ROS formation. Immunohistochemistry and western blotting were employed to assess the effects of anti-CD11d mAb treatment on spinal cord expression of gp91Phox (a subunit of NADPH oxidase producing superoxide) on formation of 4-hydroxynonenal (HNE, indicating lipid peroxidation) and on expression of caspase-3. We also assessed effects on cell death, determined by cell morphology. The expression of gp91Phox, formation of HNE, and cell death increased after SCI. Anti-CD11d mAb treatment clearly attenuated these responses. In conclusion, anti-CD11d mAb treatment significantly reduces intraspinal free radical formation caused by infiltrating leukocytes after SCI, thereby reducing secondary cell death. These effects likely underlie tissue preservation and improved neurological function that result from the mAb treatment.

    Topics: Aldehydes; Animals; Antibodies, Monoclonal; CD11 Antigens; Cell Death; Ethidium; Female; Fluoresceins; Free Radicals; Membrane Glycoproteins; NADPH Oxidase 2; NADPH Oxidases; Rats; Rats, Wistar; Spinal Cord Compression; Spinal Cord Injuries; Superoxides

2005
The presence of molecular markers of in vivo lipid peroxidation in osteoarthritic cartilage: a pathogenic role in osteoarthritis.
    Arthritis and rheumatism, 2005, Volume: 52, Issue:9

    To investigate the role of oxidative functions in human osteoarthritic (OA) chondrocytes and to investigate the presence of in vivo molecular markers of lipoxidation in OA cartilage.. An in vitro model of cartilage collagen degradation was used. Lipid peroxidation activity and overall oxidative function in OA chondrocytes were monitored by cis-parinaric acid and dichlorofluorescein assays, respectively. In vivo molecular markers of lipoxidation in normal and OA cartilage were studied using immunohistochemistry to detect the presence of malondialdehyde and hydroxynonenal adducts.. Human OA chondrocytes showed a robust amount of 3H-proline-labeled collagen degradation upon stimulation with lipopolysaccharide and calcium ionophore A21387, as compared with that in untreated OA chondrocytes. Primary OA chondrocytes showed both spontaneous and inducible levels of lipid peroxidation activity. However, lipid peroxidation activity was already maximally elevated in more than 50% of the OA chondrocyte samples. Overall, spontaneous and inducible oxidative activities were observed in all OA samples. Immunohistochemical analysis of control OA tissue sections that were not treated with monoclonal antibody showed little immunoreactivity. OA cartilage sections treated with monoclonal antibodies showed specific immunoreactivity on the cartilage surface, at sites of OA lesions, at the pericellular matrix, and at intra- and intercellular matrices. Normal cartilage sections showed faint surface reactivity.. Our observations suggest that human OA chondrocytes demonstrate spontaneous and inducible cell-associated lipoxidative and nonlipoxidative activity. Lipoxidative activity appears to be enhanced in OA chondrocytes. The presence of molecular markers of in vivo lipid peroxidation was demonstrated in OA cartilage, suggesting its role in the pathogenesis of the disease.

    Topics: Adult; Aged; Aldehydes; Antibodies, Monoclonal; Biomarkers; Calcimycin; Cartilage, Articular; Cells, Cultured; Chondrocytes; Collagen; Dose-Response Relationship, Drug; Fatty Acids, Unsaturated; Fluoresceins; Humans; Hydrogen Peroxide; Immunohistochemistry; Ionophores; Joints; Lipid Peroxidation; Lipopolysaccharides; Malondialdehyde; Middle Aged; Osteoarthritis

2005