4-hydroxy-2-butenoic-acid and 4-hydroxybutyric-acid

4-hydroxy-2-butenoic-acid has been researched along with 4-hydroxybutyric-acid* in 4 studies

Other Studies

4 other study(ies) available for 4-hydroxy-2-butenoic-acid and 4-hydroxybutyric-acid

ArticleYear
Molecular Hybridization of Potent and Selective γ-Hydroxybutyric Acid (GHB) Ligands: Design, Synthesis, Binding Studies, and Molecular Modeling of Novel 3-Hydroxycyclopent-1-enecarboxylic Acid (HOCPCA) and trans-γ-Hydroxycrotonic Acid (T-HCA) Analogs.
    Journal of medicinal chemistry, 2017, 11-09, Volume: 60, Issue:21

    γ-Hydroxybutyric acid (GHB) is a neuroactive substance with specific high-affinity binding sites. To facilitate target identification and ligand optimization, we herein report a comprehensive structure-affinity relationship study for novel ligands targeting these binding sites. A molecular hybridization strategy was used based on the conformationally restricted 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) and the linear GHB analog trans-4-hydroxycrotonic acid (T-HCA). In general, all structural modifications performed on HOCPCA led to reduced affinity. In contrast, introduction of diaromatic substituents into the 4-position of T-HCA led to high-affinity analogs (medium nanomolar K

    Topics: Binding Sites; Carboxylic Acids; Crotonates; Cyclopentanes; Drug Design; Hydroxybutyrates; Ligands; Models, Molecular; Molecular Conformation; Structure-Activity Relationship

2017
Novel high-affinity and selective biaromatic 4-substituted gamma-hydroxybutyric acid (GHB) analogues as GHB ligands: design, synthesis, and binding studies.
    Journal of medicinal chemistry, 2008, Dec-25, Volume: 51, Issue:24

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites in brain, of which the latter have not been linked unequivocally to function, but are speculated to be GHB receptors. In this study, a series of biaromatic 4-substituted GHB analogues, including 4'-phenethylphenyl, 4'-styrylphenyl, and 4'-benzyloxyphenyl GHB analogues, were synthesized and characterized pharmacologically in a [3H](E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid ([3H]NCS-382) binding assay and in GABA(A) and GABA(B) receptor binding assays. The compounds were selective for the high-affinity GHB binding sites and several displayed Ki values below 100 nM. The affinity of the 4-[4'-(2-iodobenzyloxy)phenyl] GHB analogue 17b was shown to reside predominantly with the R-enantiomer (Ki = 22 nM), which has higher affinity than previously reported GHB ligands.

    Topics: Animals; Binding Sites; Brain; Chemistry, Pharmaceutical; Chromatography; Crystallography, X-Ray; Drug Design; Humans; Hydroxybutyrates; Inhibitory Concentration 50; Kinetics; Ligands; Models, Chemical; Protein Binding; Rats

2008
Selective gamma-hydroxybutyric acid receptor ligands increase extracellular glutamate in the hippocampus, but fail to activate G protein and to produce the sedative/hypnotic effect of gamma-hydroxybutyric acid.
    Journal of neurochemistry, 2003, Volume: 87, Issue:3

    Two gamma-hydroxybutyric acid (GHB) analogues, trans-gamma-hydroxycrotonic acid (t-HCA) and gamma-(p-methoxybenzyl)-gamma-hydroxybutyric acid (NCS-435) displaced [3H]GHB from GHB receptors with the same affinity as GHB but, unlike GHB, failed to displace [3H]baclofen from GABAB receptors. The effect of the GHB analogues, GHB and baclofen, on G protein activity and hippocampal extracellular glutamate levels was compared. While GHB and baclofen stimulated 5'-O-(3-[35S]thiotriphospate) [35S]GTPgammaS binding both in cortex homogenate and cortical slices, t-HCA and NCS-435 were ineffective up to 1 mm concentration. GHB and baclofen effect was suppressed by the GABAB antagonist CGP 35348 but not by the GHB receptor antagonist NCS-382. Perfused into rat hippocampus, 500 nm and 1 mm GHB increased and decreased extracellular glutamate levels, respectively. GHB stimulation was suppressed by NCS-382, while GHB inhibition by CGP 35348. t-HCA and NCS-435 (0.1-1000 microm) locally perfused into hippocampus increased extracellular glutamate; this effect was inhibited by NCS-382 (10 microm) but not by CGP 35348 (500 microm). The results indicate that GHB-induced G protein activation and reduction of glutamate levels are GABAB-mediated effects, while the increase of glutamate levels is a GHB-mediated effect. Neither t-HCA nor NCS-435 reproduced GHB sedative/hypnotic effect in mice, confirming that this effect is GABAB-mediated. The GHB analogues constitute important tools for understanding the physiological role of endogenous GHB and its receptor.

    Topics: Animals; Autoradiography; Benzocycloheptenes; Binding, Competitive; Brain Chemistry; Extracellular Space; GABA Antagonists; Glutamic Acid; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Hippocampus; Hydroxybutyrates; Hypnotics and Sedatives; Ligands; Male; Mice; Mice, Inbred DBA; Microdialysis; Organophosphorus Compounds; Rats; Rats, Sprague-Dawley; Receptors, Cell Surface; Reflex

2003
Pathway-specific action of gamma-hydroxybutyric acid in sensory thalamus and its relevance to absence seizures.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2003, Dec-10, Volume: 23, Issue:36

    The systemic injection of gamma-hydroxybutyric acid (GHB) elicits spike and wave discharges (SWDs), the EEG hallmark of absence seizures, and represents a well established, widely used pharmacological model of this nonconvulsive epilepsy. Despite this experimental use of GHB, as well as its therapeutic use in narcolepsy and its increasing abuse, however, the precise cellular mechanisms underlying the different pharmacological actions of this drug are still unclear. Because sensory thalamic nuclei play a key role in the generation of SWDs and sleep rhythms, and because direct injection of GHB in the ventrobasal (VB) thalamus elicits SWDs, we investigated GHB effects on corticothalamic EPSCs and GABAergic IPSCs in VB thalamocortical (TC) neurons. GHB (250 microm-10 mm) reversibly decreased the amplitude of electrically evoked EPSCs and GABAA IPSCs via activation of GABAB receptors; however, approximately 60% of the IPSCs were insensitive to low (250 microm-1.0 mm) GHB concentrations. The putative GHB receptor antagonist NSC 382 applied alone had a number of unspecific effects, whereas it either had no action on, or further increased, the GHB-elicited effects on synaptic currents. Low GHB concentrations (250 microm) were also effective in increasing absence-like intrathalamic oscillations evoked by cortical afferent stimulation. These results indicate that low concentrations of GHB, similar to the brain concentrations that evoke SWDs in vivo, differentially affect excitatory and inhibitory synaptic currents in TC neurons and promote absence-like intrathalamic oscillations. Furthermore, the present data strengthen previous suggestions on the GHB mechanism of sleep promotion and will help focus future studies on the cellular mechanisms underlying its abuse.

    Topics: Afferent Pathways; Animals; Benzocycloheptenes; Cells, Cultured; Electric Conductivity; Epilepsy, Absence; Evoked Potentials; Excitatory Postsynaptic Potentials; GABA-B Receptor Agonists; Hydroxybutyrates; Neural Inhibition; Neurons, Afferent; Patch-Clamp Techniques; Rats; Rats, Wistar; Receptors, Cell Surface; Receptors, GABA-B; Synaptic Transmission; Thalamus

2003