4-ethylphenol has been researched along with 4-chlorophenol in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (16.67) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (66.67) | 29.6817 |
2010's | 1 (16.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Hachisuka, Y; Ikeda, K; Tochikubo, K; Tomida, H; Yasuda, Y | 1 |
Kapur, S; Rosario, M; Selassie, CD; Verma, RP | 1 |
Carrupt, PA; Martel, S; Ottaviani, G | 2 |
Abellán Guillén, A; Cordeiro, MN; Garrido Escudero, A; Morales Helguera, A; Pérez-Garrido, A | 1 |
Chen, H; Chen, Z; Ding, P; Gu, Q; Ju, Y; Xu, J; Zhang, Z; Zhou, H | 1 |
6 other study(ies) available for 4-ethylphenol and 4-chlorophenol
Article | Year |
---|---|
Quantitative structure-inhibitory activity relationships of phenols and fatty acids for Bacillus subtilis spore germination.
Topics: Alanine; Bacillus subtilis; Fatty Acids; Hydrogen-Ion Concentration; Kinetics; Phenols; Spores, Bacterial; Structure-Activity Relationship | 1982 |
Cellular apoptosis and cytotoxicity of phenolic compounds: a quantitative structure-activity relationship study.
Topics: Animals; Antineoplastic Agents; Apoptosis; Caspases; Cell Line, Tumor; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Enzyme Activation; Mice; Molecular Conformation; Phenols; Quantitative Structure-Activity Relationship; Vinblastine | 2005 |
Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability.
Topics: 1-Octanol; Diffusion; Dimethylpolysiloxanes; Humans; In Vitro Techniques; Membranes, Artificial; Myristates; Permeability; Skin; Skin Absorption; Water | 2006 |
In silico and in vitro filters for the fast estimation of skin permeation and distribution of new chemical entities.
Topics: Humans; Membranes, Artificial; Models, Biological; Models, Molecular; Octanols; Permeability; Pharmaceutical Preparations; Skin Absorption; Water | 2007 |
Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.
Topics: beta-Cyclodextrins; Hydrophobic and Hydrophilic Interactions; Organic Chemicals; Quantitative Structure-Activity Relationship | 2009 |
Identify liver X receptor β modulator building blocks by developing a fluorescence polarization-based competition assay.
Topics: Crystallography, X-Ray; Deoxycholic Acid; Dose-Response Relationship, Drug; Fluorescence Polarization; Fluorescent Dyes; Humans; Liver X Receptors; Models, Molecular; Molecular Structure; Structure-Activity Relationship | 2019 |