4-dimethylaminocinnamaldehyde has been researched along with propionaldehyde* in 2 studies
2 other study(ies) available for 4-dimethylaminocinnamaldehyde and propionaldehyde
Article | Year |
---|---|
Catalysis of dehydrogenation of 4-trans-(N,N-dimethylamino)cinnamaldehyde by aldehyde dehydrogenase.
4-trans-(N,N-dimethylamino)cinnamaldehyde (DACA) is a chromophoric and fluorogenic substrate of aldehyde dehydrogenase. Fluorescence of DACA is enhanced by binding to aldehyde dehydrogenase in the absence of catalysis both in the presence and absence of the coenzyme analogue 5'AMP. DACA binds to aldehyde dehydrogenase with a dissociation constant of 1-3 microM and stoichiometry of 2 mol mol(-1) enzyme. Incorporation of DACA during catalysis was also investigated and found to be 2 mol DACA mol(-1) enzyme. Effect of pH on the stoichiometry of DACA incorporation during catalysis has shown that DACA incorporation remained constant at 2 mol DACA mol(-1) enzyme, despite a 74-fold velocity enhancement between pH 5.0 and 9.0. Increase of pH increased decomposition of enzyme-acyl intermediate without affecting the rate-limiting step of the reaction. At pH 7.0 the pH stimulated velocity enhancement was 10-fold over that at pH 5.0; further velocity enhancement (11.5-fold that of pH 7.0) was achieved by 150 microM Mg(2+) ions. The velocity at pH 7.0 with Mg(2+) exceeded that of pH 9.0, and that at maximal pH stimulation at pH 9.5. It was observed that level of intermediate decreased to about 1 mol mol(-1) enzyme, indicating that Mg(2+) ions increased the rate of decomposition of the enzyme-acyl intermediate and shifted the rate-limiting step of the reaction to another step in the reaction sequence. Topics: Aldehyde Dehydrogenase; Aldehydes; Animals; Binding, Competitive; Catalysis; Catalytic Domain; Chloral Hydrate; Cinnamates; Fluorescent Dyes; Humans; Hydrogen-Ion Concentration; In Vitro Techniques; Kinetics; Magnesium; Spectrometry, Fluorescence | 2001 |
Aldehyde dehydrogenase. Covalent intermediate in aldehyde dehydrogenation and ester hydrolysis.
4-trans-(NN-Dimethylamino)cinnamaldehyde (an aldehyde, DACA) and 4-trans-(NN-dimethylamino)cinnamoylimidazole (an amide, DACI) have been shown to be substrates for human aldehyde dehydrogenase (EC 1.2.1.3) which form chromophoric covalent intermediates. The spectra of covalent intermediates from both the cytoplasmic (E1) and mitochondrial (E2) isoenzymes derived from DACA and DACI were compared. The spectra were similar when either substrate was used, and also when the two isoenzymes were compared, and resembled that obtained for 4-trnas-(NN-dimethylamino)cinnamoyl-N-acetylcysteine, but differed from the spectrum of 4-trans-(NN-dimethylamino)cinnamoyl ethyl ester. After extensive digestion of the covalent intermediates from both 3H-labelled DACA and DACI with Pronase and purification, the labelled amino acid was identified as cysteine. Covalent intermediates from both DACA and DACI were also digested with trypsin, and labelled peptides were purified by ion-exchange and reverse-phase chromatography. Amino acid sequence analysis showed that the peptide comprising residues 273-307 was labelled by both DACA and DACI. The radioactive label at cysteine residues 301-303 of the primary structure could be unequivocally identified by employing the DACA derivative. Assignment of label to cysteine-302 was achieved by employing iodoacetamide-labelled E1 isoenzyme (iodoacetamide specifically labels cysteine-302), in which case there was no formation of the covalent intermediate from either DACA or DACI. In addition, cysteine-302 is the only cysteine residue conserved in all aldehyde dehydrogenases sequenced. Thus cysteine-302 is the amino acid residue that forms a covalent intermediate with both aldehyde and ester substrates. Topics: Alcohol Dehydrogenase; Aldehydes; Amino Acid Sequence; Catalysis; Chloral Hydrate; Chromatography, Liquid; Cinnamates; Esters; Humans; Hydrolysis; Imidazoles; Isoenzymes; Kinetics; Molecular Sequence Data; NAD; Nitrophenols; Substrate Specificity | 1992 |