4-butyrolactone has been researched along with carbostyril in 22 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (9.09) | 18.2507 |
2000's | 13 (59.09) | 29.6817 |
2010's | 6 (27.27) | 24.3611 |
2020's | 1 (4.55) | 2.80 |
Authors | Studies |
---|---|
Hirose, T; Kikuchi, T; Miwa, T; Morita, S; Oshiro, Y; Tottori, K; Uwahodo, Y | 1 |
Kikuchi, T; Kurahashi, N; Nishi, T; Oshiro, Y; Sato, S; Tanaka, T; Tottori, K; Uwahodo, Y | 1 |
Holden, I; Swift, I; Williams, I | 1 |
Iglewski, BH; McKnight, SL; Pesci, EC | 1 |
Curty, LK; Hamzehpour, MM; Köhler, T; Pechere, JC; van Delden, C | 1 |
Bu, Y; Smith, KM; Suga, H | 1 |
Cámara, M; Chhabra, SR; Diggle, SP; Williams, P; Winzer, K; Worrall, KE | 1 |
Bycroft, BW; Chhabra, SR; Hooi, DS; Pritchard, DI; Williams, P | 1 |
Karig, D; Weiss, R | 1 |
Aendekerk, S; Cámara, M; Cornelis, P; Diggle, SP; Høiby, N; Song, Z; Williams, P | 1 |
Bassler, BL; Camilli, A | 1 |
Pritchard, DI | 1 |
Calfee, MW; Carty, NL; Colmer-Hamood, JA; Hamood, AN; Layland, N; Pesci, EC | 1 |
Bredenbruch, F; Dieterich, G; Häussler, S; Jensen, V; Löns, D; Meissner, A; Münch, R; Zaoui, C | 1 |
Brix, S; Cooley, M; Diggle, SP; Fink, LN; Froekiaer, H; Givskov, M; Lazenby, J; Skindersoe, ME; Whittall, C; Williams, P; Zeuthen, LH | 1 |
Adham, N; Agai-Csongor, E; Bugovics, G; Domány, G; Fazekas, K; Gyertyán, I; Hornok, K; Horváth, A; Kiss, B; Laszlovszky, I; Némethy, Z; Orosz, S; Schmidt, E; Szombathelyi, Z; Tihanyi, K | 1 |
Cugini, C; Hogan, DA; Morales, DK | 1 |
Barbey, C; Beury-Cirou, A; Burini, JF; Crépin, A; Dufour, A; Faure, D; Feuilloley, M; Hélias, V; Heurlier, K; Latour, X; Nasser, W; Orange, N; Reverchon, S; Taupin, L | 1 |
Boon, C; Chen, S; Deng, Y; Lim, A; Zhang, LH | 1 |
Alexandar, V; Chhibber, S; Harjai, K; Vadekeetil, A | 1 |
Nomura, N; Sakai, R; Toyofuku, M; Yang, J | 1 |
Alcalde-Rico, M; Cámara, M; Halliday, N; Martínez, JL; Olivares-Pacheco, J | 1 |
2 review(s) available for 4-butyrolactone and carbostyril
Article | Year |
---|---|
Bacterial small-molecule signaling pathways.
Topics: 4-Butyrolactone; Bacterial Physiological Phenomena; Bacterial Proteins; Biofilms; Cyclic GMP; Escherichia coli Proteins; Gene Expression Regulation, Bacterial; Genes, Bacterial; Homoserine; Lactones; Models, Biological; Oligopeptides; Phosphoric Diester Hydrolases; Phosphorus-Oxygen Lyases; Purine Nucleotides; Quinolones; Second Messenger Systems; Signal Transduction; Virulence | 2006 |
Immune modulation by Pseudomonas aeruginosa quorum-sensing signal molecules.
Topics: 4-Butyrolactone; Animals; Cell Communication; Homoserine; Humans; Immunologic Factors; Pseudomonas aeruginosa; Quinolones | 2006 |
20 other study(ies) available for 4-butyrolactone and carbostyril
Article | Year |
---|---|
7-(4-[4-(2,3-Dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2(1H)-quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity.
Topics: 4-Butyrolactone; Animals; Antipsychotic Agents; Apomorphine; Aripiprazole; Catalepsy; Corpus Striatum; Dihydroxyphenylalanine; Dopamine Agonists; Dopamine D2 Receptor Antagonists; Drug Interactions; Male; Mice; Mice, Inbred ICR; Motor Activity; Oxidopamine; Piperazines; Presynaptic Terminals; Quinolones; Radioligand Assay; Rats; Reserpine; Spiperone; Stereotyped Behavior; Synapses; Tritium | 1995 |
Novel antipsychotic agents with dopamine autoreceptor agonist properties: synthesis and pharmacology of 7-[4-(4-phenyl-1-piperazinyl)butoxy]-3,4-dihydro-2(1H)-quinolinone derivatives.
Topics: 4-Butyrolactone; Animals; Antipsychotic Agents; Apomorphine; Aripiprazole; Brain; Catalepsy; Dihydroxyphenylalanine; Dopamine Agonists; Dopamine Antagonists; GABA Modulators; Male; Mice; Mice, Inbred ICR; Molecular Structure; Piperazines; Quinolones; Rats; Stereotyped Behavior; Structure-Activity Relationship | 1998 |
New signal molecules on the quorum-sensing block.
Topics: 4-Butyrolactone; Bacterial Proteins; Diketopiperazines; DNA-Binding Proteins; Homoserine; Ligases; Piperazines; Pseudomonas aeruginosa; Quinolones; Signal Transduction; Trans-Activators; Transcription Factors | 2000 |
The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa.
Topics: 4-Butyrolactone; Bacterial Proteins; DNA-Binding Proteins; Gene Expression Regulation, Bacterial; Ligases; Metalloendopeptidases; Pseudomonas aeruginosa; Quinolones; Signal Transduction; Trans-Activators; Transcription Factors; Transcription, Genetic | 2000 |
Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa.
Topics: 4-Butyrolactone; Anti-Bacterial Agents; Bacterial Outer Membrane Proteins; Bacterial Proteins; Base Sequence; Gene Expression Regulation, Bacterial; Hexosyltransferases; Ligases; Molecular Sequence Data; Mutation; Pancreatic Elastase; Pseudomonas aeruginosa; Quinolones; Sequence Analysis, DNA; Signal Transduction; Trans-Activators; Transcription Factors; Transcription, Genetic; Virulence | 2001 |
Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer.
Topics: 4-Butyrolactone; Aminophenols; Bacterial Proteins; Biofilms; DNA-Binding Proteins; Drug Design; Gene Library; Genes, Reporter; Genetic Techniques; Homoserine; Lactones; Molecular Structure; Pseudomonas aeruginosa; Quinolones; Signal Transduction; Structure-Activity Relationship; Trans-Activators; Virulence Factors | 2003 |
The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR.
Topics: 4-Butyrolactone; Adaptation, Biological; Artificial Gene Fusion; Bacterial Proteins; Biofilms; DNA-Binding Proteins; Gene Deletion; Gene Expression Regulation, Bacterial; Genes, Bacterial; Genes, Reporter; Lectins; Mutagenesis, Insertional; Pseudomonas aeruginosa; Pyocyanine; Quinolones; Regulon; Sigma Factor; Signal Transduction; Trans-Activators; Virulence Factors | 2003 |
Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules.
Topics: 4-Butyrolactone; Concanavalin A; Gene Expression Regulation; Homoserine; Humans; Interleukin-2; Leukocytes, Mononuclear; Lipopolysaccharides; Lymphocyte Activation; Pseudomonas aeruginosa; Quinolones; Signal Transduction; Tumor Necrosis Factor-alpha | 2004 |
Signal-amplifying genetic circuit enables in vivo observation of weak promoter activation in the Rhl quorum sensing system.
Topics: 4-Butyrolactone; Computer Simulation; Escherichia coli; Genes, Reporter; Genes, Suppressor; Plasmids; Promoter Regions, Genetic; Pseudomonas aeruginosa; Quinolones; Signal Transduction; Transcription, Genetic | 2005 |
The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication.
Topics: 4-Butyrolactone; 4-Quinolones; Animals; Bacterial Outer Membrane Proteins; Base Sequence; DNA, Bacterial; Drug Resistance, Multiple, Bacterial; Female; Gene Expression; Genes, Bacterial; Lactuca; Membrane Transport Proteins; Mutation; Phenotype; Plant Diseases; Pseudomonas aeruginosa; Pseudomonas Infections; Quinolones; Rats; Rats, Inbred Lew; Signal Transduction; Virulence | 2005 |
PtxR modulates the expression of QS-controlled virulence factors in the Pseudomonas aeruginosa strain PAO1.
Topics: 4-Butyrolactone; Bacterial Proteins; Gene Expression Regulation, Bacterial; Glycolipids; Homoserine; Metalloendopeptidases; Mutation; Operon; Pseudomonas aeruginosa; Pyocyanine; Quinolones; Transcription Factors; Virulence Factors | 2006 |
RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways.
Topics: 4-Butyrolactone; Bacterial Proteins; Gene Expression Regulation, Bacterial; Humans; Iron; Phosphates; Pseudomonas aeruginosa; Pyocyanine; Quinolones; Quorum Sensing; Signal Transduction | 2006 |
Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation.
Topics: 4-Butyrolactone; Animals; Cell Proliferation; Dendritic Cells; Homoserine; Immunologic Factors; Mice; Mice, Inbred C57BL; Pseudomonas aeruginosa; Quinolones; T-Lymphocytes | 2009 |
Cariprazine (RGH-188), a dopamine D(3) receptor-preferring, D(3)/D(2) dopamine receptor antagonist-partial agonist antipsychotic candidate: in vitro and neurochemical profile.
Topics: 4-Butyrolactone; Animals; Antipsychotic Agents; Aripiprazole; Brain; Cell Line; Cricetinae; Cricetulus; Cyclic AMP; Dopamine; Dopamine D2 Receptor Antagonists; Drug Partial Agonism; Guinea Pigs; Humans; In Vitro Techniques; Inositol Phosphates; Male; Mice; Piperazines; Quinolones; Radioligand Assay; Rats; Receptors, Dopamine D3; Receptors, Histamine H1; Receptors, Serotonin; Recombinant Proteins; Reserpine; Serotonin | 2010 |
Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains.
Topics: 4-Butyrolactone; Bacterial Proteins; Candida albicans; Coculture Techniques; Farnesol; Gene Deletion; Gene Expression Regulation, Bacterial; Mutation; Oxidative Stress; Phenazines; Pseudomonas aeruginosa; Pyocyanine; Quinolones; Quorum Sensing; Reactive Oxygen Species; Signal Transduction; Trans-Activators; Virulence Factors | 2010 |
Quorum sensing signaling molecules produced by reference and emerging soft-rot bacteria (Dickeya and Pectobacterium spp.).
Topics: 4-Butyrolactone; Acyl-Butyrolactones; Bacterial Proteins; Enterobacteriaceae; gamma-Aminobutyric Acid; Homoserine; Indoleacetic Acids; Kinetics; Lactones; Multienzyme Complexes; Pectobacterium; Quinolones; Quorum Sensing; RNA, Messenger; Signal Transduction; Solanum tuberosum; Tryptophan | 2012 |
Cis-2-dodecenoic acid signal modulates virulence of Pseudomonas aeruginosa through interference with quorum sensing systems and T3SS.
Topics: 4-Butyrolactone; Animals; Antibiosis; Bacterial Secretion Systems; Biofilms; Burkholderia cenocepacia; Disease Models, Animal; Epithelial Cells; Fatty Acids, Monounsaturated; Gene Expression Profiling; HeLa Cells; Homoserine; Humans; Pseudomonas aeruginosa; Pseudomonas Infections; Quinolones; Quorum Sensing; Signal Transduction; Virulence; Virulence Factors; Zebrafish | 2013 |
Adjuvant effect of cranberry proanthocyanidin active fraction on antivirulent property of ciprofloxacin against Pseudomonas aeruginosa.
Topics: 4-Butyrolactone; Acyl-Butyrolactones; Adjuvants, Pharmaceutic; Anti-Bacterial Agents; Biofilms; Ciprofloxacin; Drug Synergism; Microbial Sensitivity Tests; Molecular Docking Simulation; Plant Extracts; Proanthocyanidins; Pseudomonas aeruginosa; Pseudomonas Infections; Quinolones; Quorum Sensing; Vaccinium macrocarpon; Virulence | 2016 |
Influence of the alginate production on cell-to-cell communication in Pseudomonas aeruginosa PAO1.
Topics: 4-Butyrolactone; Alginates; Bacterial Proteins; Extracellular Matrix; Gene Expression Regulation, Bacterial; Glucuronic Acid; Hexuronic Acids; Pseudomonas aeruginosa; Quinolones; Quorum Sensing; Signal Transduction | 2017 |
The impaired quorum sensing response of Pseudomonas aeruginosa MexAB-OprM efflux pump overexpressing mutants is not due to non-physiological efflux of 3-oxo-C12-HSL.
Topics: 4-Butyrolactone; Anti-Bacterial Agents; Bacterial Outer Membrane Proteins; Caprylates; Drug Resistance, Bacterial; Homoserine; Membrane Transport Proteins; Pseudomonas aeruginosa; Quinolones; Quorum Sensing | 2020 |