Page last updated: 2024-08-18

4-butyrolactone and 3-chlorocatechol

4-butyrolactone has been researched along with 3-chlorocatechol in 2 studies

Research

Studies (2)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (50.00)29.6817
2010's1 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Golovleva, LA; Gröning, J; Kaschabek, SR; Moiseeva, OV; Schlömann, M; Solyanikova, IP; Thiel, M1
Chernykh, A; Ferraroni, M; Golovleva, L; Kolomytseva, M; Scozzafava, A1

Other Studies

2 other study(ies) available for 4-butyrolactone and 3-chlorocatechol

ArticleYear
A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence.
    Journal of bacteriology, 2002, Volume: 184, Issue:19

    Topics: 4-Butyrolactone; Adipates; Amino Acid Sequence; Bacterial Proteins; Biodegradation, Environmental; Carbon-Carbon Double Bond Isomerases; Carboxylic Ester Hydrolases; Catechols; Cloning, Molecular; Dioxygenases; Hydrolases; Intramolecular Lyases; Molecular Sequence Data; Open Reading Frames; Oxygenases; Rhodococcus; Sequence Alignment; Sequence Analysis, DNA; Sorbic Acid

2002
Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP.
    Biochimica et biophysica acta, 2014, Volume: 1844, Issue:9

    Topics: 4-Butyrolactone; Adipates; Bacterial Proteins; Catalytic Domain; Catechols; Chlorophenols; Crystallography, X-Ray; Histidine; Intramolecular Lyases; Lactones; Molecular Docking Simulation; Protein Multimerization; Pseudomonas putida; Rhodococcus; Sorbic Acid; Structural Homology, Protein; Structure-Activity Relationship; Substrate Specificity

2014