4-aminopyrrolidine-2-4-dicarboxylic-acid has been researched along with 3-4-dihydroxyphenylglycol* in 2 studies
2 other study(ies) available for 4-aminopyrrolidine-2-4-dicarboxylic-acid and 3-4-dihydroxyphenylglycol
Article | Year |
---|---|
Metabotropic glutamate receptor 2 modulates excitatory synaptic transmission in the rat globus pallidus.
While group II metabotropic glutamate receptors (mGluRs) are known to be expressed in the rat globus pallidus (GP), their functions remain poorly understood. We used standard patch clamping technique in GP slices to determine the effect of group II mGluR activation on excitatory transmission in this region. Activation of group II mGluRs with the group-selective agonist DCG-IV or APDC reduced the amplitude of the evoked excitatory postsynaptic currents (EPSCs) and significantly increased the paired pulse ratio suggesting a presynaptic site of action. This was further supported by double-labeling electron microscopy data showing that group II mGluRs (mGluR2 and 3) immunoreactivity is localized in glutamatergic pre-terminal axons and terminals in the GP. Furthermore, we found that LY 487379, an mGluR2-specific allosteric modulator, significantly potentiated the inhibitory effect of DCG-IV on the excitatory transmission in the GP. Co-incubation with 30 microM LY 487379 increased the potency of DCG-IV about 10-fold in the GP. We were thus able to pharmacologically isolate the mGluR2-mediated function in the rat GP using an mGluR2-specific allosteric modulator. Therefore, our findings do not only shed light on the functions of group II mGluRs in the GP, they also illustrate the therapeutic potential of mGluR-targeting allosteric modulators in neurological disorders such as Parkinson's disease. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Aminobutyrates; Anesthetics, Local; Animals; Animals, Newborn; Cyclopropanes; Dose-Response Relationship, Drug; Dose-Response Relationship, Radiation; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Globus Pallidus; Glycine; In Vitro Techniques; Lidocaine; Membrane Potentials; Methoxyhydroxyphenylglycol; Neurons; Patch-Clamp Techniques; Proline; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Sulfonamides; Synaptic Transmission; Xanthenes | 2005 |
Evidence that DHPG-induced nociception depends on glutamate release from primary afferent C-fibres.
We examined whether enhanced glutamate release contributes to the expression of persistent spontaneous nociceptive behaviours (SNBs) in rats induced by intrathecal (i.t.) administration of the selective group I mGluR agonist, (RS)-3,5-dihydroxyphenylglycine ((RS)-DHPG). Pretreatment with drugs that have been shown to inhibit glutamate release, including a group II metabotropic glutamate receptor (mGluR) agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate ((2R,4R)-APDC), a group III mGluR agonist L-2-amino-4-phosphonobutyrate (L-AP4), or the use-dependent sodium channel blockers 3,5-diamino-6-(2,3-diclorophenyl)-1,2,4-triazine (lamotrigine) and 2-amino-6-trifluoromethoxybenzothiazole (riluzole), produced dose-dependent reductions in (RS)-DHPG-induced SNBs. We have also shown that incubation of rat lumbar spinal cord slices with (RS)-DHPG potentiates 4-aminopyridine-evoked (4-AP) release of glutamate. Furthermore, we found that destruction of unmyelinated primary afferent C-fibres by neonatal capsaicin treatment significantly reduced (RS)-DHPG-induced SNBs in adult rats. Together, these results suggest that (RS)-DHPG-induced nociception is dependent on spinal glutamate release, probably from primary afferent C-fibres. Topics: 4-Aminopyridine; Animals; Behavior, Animal; Capsaicin; Excitatory Amino Acid Agonists; Glutamic Acid; Injections, Spinal; Lamotrigine; Male; Methoxyhydroxyphenylglycol; Nerve Fibers; Neurons, Afferent; Nociceptors; Proline; Propionates; Rats; Rats, Long-Evans; Riluzole; Triazines | 2000 |