4-aminopyrrolidine-2-4-dicarboxylic-acid and 2-amino-4-phosphonobutyric-acid

4-aminopyrrolidine-2-4-dicarboxylic-acid has been researched along with 2-amino-4-phosphonobutyric-acid* in 4 studies

Other Studies

4 other study(ies) available for 4-aminopyrrolidine-2-4-dicarboxylic-acid and 2-amino-4-phosphonobutyric-acid

ArticleYear
Ameliorative effect of a hippocampal metabotropic glutamate- receptor agonist on histamine H1 receptor antagonist-induced memory deficit in rats.
    Journal of pharmacological sciences, 2010, Volume: 113, Issue:1

    This study was performed to investigate the ameliorative effects of metabotropic glutamate (mGlu)-receptor agonists on histamine H(1) receptor antagonist-induced spatial memory deficit and the decrease in hippocampal theta activity in rats. Intraperitoneal injection of pyrilamine (35 mg/kg) resulted in impaired reference and working memory in the radial maze task and decreased hippocampal theta amplitude and power. The working memory deficit and decreased hippocampal theta power induced by pyrilamine were ameliorated by intrahippocampal injection of (RS)-3,5-dihydroxyphenylglycine (DHPG) (1 and 10 microg/side), a group I mGlu-receptor agonist; however, intrahippocampal injection of (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC), a group II mGlu-receptor agonist, and L-(+)-2-amino-4-phosphonobutyric acid (L-AP4), a group III mGlu-receptor agonist, showed no significant effect on the pyrilamine-induced memory deficit and decreased hippocampal theta activity. These results indicate that the activation of hippocampal group I mGlu receptors, but not group II and III mGlu receptors, improve the histamine H(1) receptor antagonist-induced working memory deficit and decreased hippocampal theta activity.

    Topics: Aminobutyrates; Animals; Drug Interactions; Excitatory Amino Acid Agonists; Glycine; Hippocampus; Histamine H1 Antagonists; Male; Maze Learning; Memory Disorders; Memory, Short-Term; Proline; Pyrilamine; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Resorcinols; Theta Rhythm

2010
Metabotropic glutamate receptor 2 modulates excitatory synaptic transmission in the rat globus pallidus.
    Neuropharmacology, 2005, Volume: 49 Suppl 1

    While group II metabotropic glutamate receptors (mGluRs) are known to be expressed in the rat globus pallidus (GP), their functions remain poorly understood. We used standard patch clamping technique in GP slices to determine the effect of group II mGluR activation on excitatory transmission in this region. Activation of group II mGluRs with the group-selective agonist DCG-IV or APDC reduced the amplitude of the evoked excitatory postsynaptic currents (EPSCs) and significantly increased the paired pulse ratio suggesting a presynaptic site of action. This was further supported by double-labeling electron microscopy data showing that group II mGluRs (mGluR2 and 3) immunoreactivity is localized in glutamatergic pre-terminal axons and terminals in the GP. Furthermore, we found that LY 487379, an mGluR2-specific allosteric modulator, significantly potentiated the inhibitory effect of DCG-IV on the excitatory transmission in the GP. Co-incubation with 30 microM LY 487379 increased the potency of DCG-IV about 10-fold in the GP. We were thus able to pharmacologically isolate the mGluR2-mediated function in the rat GP using an mGluR2-specific allosteric modulator. Therefore, our findings do not only shed light on the functions of group II mGluRs in the GP, they also illustrate the therapeutic potential of mGluR-targeting allosteric modulators in neurological disorders such as Parkinson's disease.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Aminobutyrates; Anesthetics, Local; Animals; Animals, Newborn; Cyclopropanes; Dose-Response Relationship, Drug; Dose-Response Relationship, Radiation; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Globus Pallidus; Glycine; In Vitro Techniques; Lidocaine; Membrane Potentials; Methoxyhydroxyphenylglycol; Neurons; Patch-Clamp Techniques; Proline; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Sulfonamides; Synaptic Transmission; Xanthenes

2005
Role of group II and group III metabotropic glutamate receptors in spinal cord injury.
    Experimental neurology, 2002, Volume: 173, Issue:1

    Spinal cord injury (SCI) produces an increase in extracellular excitatory amino acid (EAA) concentrations that results in glutamate receptor-mediated excitotoxic events. An important class of these receptors is the metabotropic glutamate receptors (mGluRs). mGluRs can activate a number of intracellular pathways that increase neuronal excitability and modulate neurotransmission. Group I mGluRs are known to modulate EAA release and the development of chronic central pain (CCP) following SCI; however, the role of group II and III mGluRs remains unclear. To begin evaluating group II and III mGluRs in SCI, we administered the specific agonists for group II, APDC, or group III, L-AP4, by interspinal injection immediately following SCI. Contusion injury was produced at spinal segment T10 with a New York University impactor (12.5-mm drop, 10-g rod 2 mm in diameter) in 30 adult male Sprague-Dawley rats (175-200 g). Evoked and spontaneous behavioral measures of CCP, locomotor recovery, changes in mGluR expression, and amount of spared tissue were examined. Neither APDC nor L-AP4 affected locomotor recovery or the development of thermal hyperalgesia; however, L-AP4 and APDC attenuated changes in mechanical thresholds and changes in exploratory behavior indicative of CCP. APDC- and L-AP4-treated groups had higher expression levels of mGluR2/3 at the epicenter of injury on post contusion day 28; however, there was no difference in the amount of spared tissue between treatment groups. These results demonstrate that treatment with agonists to group II and III mGluRs following SCI affects mechanical responses, exploratory behavior, and mGluR2/3 expression without affecting the amount of tissue spared, suggesting that the level of mGluR expression after SCI may modulate nociceptive responses.

    Topics: Aminobutyrates; Animals; Behavior, Animal; Chronic Disease; Disease Models, Animal; Excitatory Amino Acid Agonists; Exploratory Behavior; Hyperalgesia; Male; Motor Activity; Pain Measurement; Proline; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Recovery of Function; Spinal Cord; Spinal Cord Injuries; Wounds, Nonpenetrating

2002
The group I metabotropic glutamate receptor antagonist S-4-CPG modulates the locomotor response produced by the activation of D1-like, but not D2-like, dopamine receptors in the rat nucleus accumbens.
    The European journal of neuroscience, 2001, Volume: 13, Issue:11

    Functional interactions between dopamine (DA) and glutamate neurotransmissions in both the dorsal and the ventral striatum have been described for long time. However, there is much controversy as to whether glutamate transmission stimulates or attenuates DA release and locomotor activity. We investigated the functional interactions on locomotor activity between group I metabotropic glutamatergic receptors (mGlu receptors) and both D1-like and D2-like DA receptors in the rat nucleus accumbens. Intra-accumbens administration of the selective group I mGlu receptor antagonist S-4-CPG (0.2 or 2 microg per side), which had no effect when injected alone, prevented the increase in locomotor activity produced by the selective D1-like receptor agonist SKF 38393 (1 microg per side). Co-administration with S-4-CPG of the group I mGlu receptor agonist DHPG, but not of the group II mGlu receptor agonist APDC or the group III mGlu receptor agonist AP4, reversed the antagonistic effect of S-4-CPG on the SKF 38393-induced increase in locomotor activity. This indicates that the antagonistic effect of S-4-CPG could result from an action at the group I mGlu receptors. In contrast, administration of S-4-CPG showed no effect on the locomotor responses produced by either the selective D2-like receptor agonist LY 171555 (1 microg per side) or a mixed solution of SKF 38393 + LY 171555 (1 microg per side each). Altogether, these results confirm that glutamate transmission may control locomotor function through mGlu receptors in a DA-dependent manner, and further indicate that group I mGlu receptors would interact with D1-like receptors, but not D2-like receptors, to modulate DA transmission and locomotor activity.

    Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Aminobutyrates; Animals; Benzoates; Dopamine; Dopamine Agonists; Dopamine D2 Receptor Antagonists; Drug Interactions; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; Male; Motor Activity; Neurons; Nucleus Accumbens; Proline; Quinolines; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D1; Receptors, Dopamine D2; Receptors, Metabotropic Glutamate; Synaptic Transmission

2001