4-aminopyridine and ibotenic acid

4-aminopyridine has been researched along with ibotenic acid in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (75.00)18.2507
2000's1 (25.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Sherman, AD1
Boos, R; Schneider, H; Wässle, H1
Barrionuevo, G; Fleck, MW; Henze, DA; Palmer, AM1

Other Studies

4 other study(ies) available for 4-aminopyridine and ibotenic acid

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Depolarization and synaptosomal glutamine utilization.
    Neurochemical research, 1991, Volume: 16, Issue:4

    Topics: 4-Aminopyridine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain; Cell Fractionation; Centrifugation, Zonal; gamma-Aminobutyric Acid; Glutamine; Ibotenic Acid; Male; Potassium Chloride; Rats; Rats, Inbred Strains; Synaptosomes; Veratridine

1991
Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1993, Volume: 13, Issue:7

    Topics: 4-Aminopyridine; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Aminobutyrates; Animals; Cobalt; Electrophysiology; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Glycine; Ibotenic Acid; In Vitro Techniques; Ion Channel Gating; Ion Channels; Kainic Acid; Membrane Potentials; N-Methylaspartate; Potassium Channels; Quinoxalines; Rats; Receptors, Amino Acid; Retina; Retinal Ganglion Cells; Sodium Channels; Strychnine; Synapses; Tetraethylammonium; Tetraethylammonium Compounds; Tetrodotoxin

1993
Aspartate and glutamate mediate excitatory synaptic transmission in area CA1 of the hippocampus.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1993, Volume: 13, Issue:9

    Topics: 4-Aminopyridine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Calcium; Evoked Potentials; Glucose; Glutamates; Glutamic Acid; Hippocampus; Ibotenic Acid; In Vitro Techniques; Male; Membrane Potentials; N-Methylaspartate; Neurons; Pipecolic Acids; Pyramidal Tracts; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Synapses; Synaptic Transmission; Tritium

1993