4-aminopyridine has been researched along with cyclothiazide in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (16.67) | 18.2507 |
2000's | 3 (50.00) | 29.6817 |
2010's | 2 (33.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Burnett, JP; Desai, MA; Schoepp, DD | 1 |
Kardos, J; Lasztóczi, B | 1 |
Inoue, H; Okada, Y | 1 |
Chavis, P; Farrugia, F; Garenne, A; Le Masson, G; Manzoni, OJ; Marsicano, G; Piet, R | 1 |
Fan, X; Hess, EJ; Hughes, KE; Jinnah, HA | 1 |
6 other study(ies) available for 4-aminopyridine and cyclothiazide
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Cyclothiazide selectively potentiates AMPA- and kainate-induced [3H]norepinephrine release from rat hippocampal slices.
Topics: 4-Aminopyridine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Antihypertensive Agents; Benzothiadiazines; Drug Synergism; Hippocampus; Kainic Acid; Male; N-Methylaspartate; Norepinephrine; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Kainic Acid; Tritium; Veratridine | 1994 |
Cyclothiazide prolongs low [Mg2+]-induced seizure-like events.
Topics: 4-Aminopyridine; Animals; Benzodiazepines; Benzothiadiazines; Diuretics; Excitatory Amino Acid Antagonists; Glutamic Acid; Hippocampus; Magnesium Deficiency; Male; Potassium Channel Blockers; Pyramidal Cells; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Presynaptic; Seizures | 2006 |
Roles of volume-sensitive chloride channel in excitotoxic neuronal injury.
Topics: 2-Amino-5-phosphonovalerate; 4-Aminopyridine; Animals; Apoptosis; Benzothiadiazines; Bicuculline; Bumetanide; Cell Size; Cells, Cultured; Cerebral Cortex; Chlorides; Dendrites; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; GABA-A Receptor Antagonists; Glycolates; Ion Channels; Mice; Mice, Inbred C57BL; N-Methylaspartate; Necrosis; Neurons; Neurotoxins; Nitrobenzoates; Patch-Clamp Techniques; Phloretin; Picrotoxin; Potassium Channel Blockers; Potassium Channels; Quinine; Receptors, N-Methyl-D-Aspartate; Sodium Chloride Symporter Inhibitors; Sodium Chloride Symporters; Somatosensory Cortex; Tetrodotoxin | 2007 |
State-dependent, bidirectional modulation of neural network activity by endocannabinoids.
Topics: 4-Aminopyridine; Action Potentials; Animals; Animals, Newborn; Benzothiadiazines; Brain; Cannabinoid Receptor Modulators; Cells, Cultured; Electric Stimulation; Endocannabinoids; Excitatory Amino Acid Antagonists; GABA Antagonists; In Vitro Techniques; Mice; Mice, Transgenic; Nerve Net; Neural Inhibition; Neurons; Organophosphorus Compounds; Picrotoxin; Piperidines; Potassium Channel Blockers; Pyrazoles; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Sodium Channel Blockers; Tetrodotoxin; Valine | 2011 |
Selective and sustained α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation in cerebellum induces dystonia in mice.
Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; 4-Aminopyridine; Animals; Benzothiadiazines; Cerebellum; Dose-Response Relationship, Drug; Dystonia; Female; Male; Mice; Mice, Inbred C57BL; Quisqualic Acid; Receptors, AMPA; Receptors, Kainic Acid | 2012 |