4-aminopyridine has been researched along with capsazepine in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (80.00) | 29.6817 |
2010's | 1 (20.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Ahn, D; Kwon, S; Lee, Y; Leem, J; Nam, T; Yeon, D | 1 |
Boachie-Ansah, G; Grainger, J | 1 |
Fujimoto, S; Kunimatsu, M; Mori, M; Tsushima, H | 1 |
Chiang, CC; Durand, DM; Gonzalez-Reyes, LE; Ladas, TP | 1 |
5 other study(ies) available for 4-aminopyridine and capsazepine
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Capsaicin-induced relaxation in rabbit coronary artery.
Topics: 4-Aminopyridine; Animals; Calcium; Capsaicin; Coronary Vessels; Dinoprost; Drug Interactions; Fluorescent Dyes; Fura-2; In Vitro Techniques; Isometric Contraction; Muscle Relaxation; Muscle, Smooth, Vascular; Peptides; Potassium Channel Blockers; Potassium Channels; Rabbits; Ruthenium Red | 2001 |
Anandamide-induced relaxation of sheep coronary arteries: the role of the vascular endothelium, arachidonic acid metabolites and potassium channels.
Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; 4-Aminopyridine; Animals; Apamin; Arachidonic Acid; Arachidonic Acids; Barium; Calcium Channel Blockers; Cannabinoid Receptor Modulators; Cannabinoids; Capsaicin; Coronary Vessels; Cytochrome P-450 Enzyme Inhibitors; Dose-Response Relationship, Drug; Endocannabinoids; Endothelium, Vascular; Enzyme Inhibitors; Fatty Acids, Unsaturated; Glyburide; In Vitro Techniques; Indomethacin; Miconazole; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Peptides; Phenylmethylsulfonyl Fluoride; Piperidines; Polyunsaturated Alkamides; Potassium; Potassium Channel Blockers; Potassium Channels; Pyrazoles; Receptors, Drug; Rimonabant; Sheep; Tetraethylammonium; Vasoconstrictor Agents; Vasodilation | 2001 |
Capsaicin-induced, capsazepine-insensitive relaxation of the guinea-pig ileum.
Topics: 4-Aminopyridine; Acetylcholine; Animals; Apamin; Barium; Benzopyrans; Caffeine; Calcitonin Gene-Related Peptide; Calcium; Capsaicin; Charybdotoxin; Diclofenac; Dimethyl Sulfoxide; Diterpenes; Dose-Response Relationship, Drug; Enzyme Inhibitors; Glyburide; Guanethidine; Guinea Pigs; Ileum; In Vitro Techniques; Intracellular Signaling Peptides and Proteins; Male; Muscle Relaxation; Muscle, Smooth; Myosin Light Chains; Nitroarginine; Papaverine; Peptide Fragments; Phosphodiesterase Inhibitors; Phosphorylation; Piperidines; Potassium Channel Blockers; Potassium Channels; Potassium Chloride; Protein Serine-Threonine Kinases; Pyrazoles; Receptor, Cannabinoid, CB1; rho-Associated Kinases; Tetraethylammonium; Vasodilator Agents | 2006 |
TRPV1 antagonist capsazepine suppresses 4-AP-induced epileptiform activity in vitro and electrographic seizures in vivo.
Topics: 4-Aminopyridine; Animals; Anticonvulsants; Capsaicin; Convulsants; Disease Models, Animal; Epilepsy; Evoked Potentials; Mice; Mice, Inbred C57BL; Mice, Transgenic; TRPV Cation Channels | 2013 |