4-aminophenol and acetazolamide

4-aminophenol has been researched along with acetazolamide in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (50.00)29.6817
2010's2 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Hilvo, M; Innocenti, A; Parkkila, S; Scozzafava, A; Supuran, CT1
Innocenti, A; Scozzafava, A; Supuran, CT; Vullo, D1
Ekins, S; Williams, AJ; Xu, JJ1
Bua, S; Capasso, C; Del Prete, S; Entezari Heravi, Y; Gratteri, P; Nocentini, A; Saboury, AA; Sereshti, H; Supuran, CT1

Other Studies

4 other study(ies) available for 4-aminophenol and acetazolamide

ArticleYear
Carbonic anhydrase inhibitors: Inhibition of the new membrane-associated isoform XV with phenols.
    Bioorganic & medicinal chemistry letters, 2008, Jun-15, Volume: 18, Issue:12

    Topics: Animals; Binding Sites; Carbonic Anhydrase I; Carbonic Anhydrase II; Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Dose-Response Relationship, Drug; Humans; Hydrogen Bonding; Isoenzymes; Mice; Molecular Structure; Phenols; Stereoisomerism; Structure-Activity Relationship

2008
Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid.
    Bioorganic & medicinal chemistry, 2008, Aug-01, Volume: 16, Issue:15

    Topics: Acetaminophen; Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Molecular Structure; Protein Isoforms; Salicylic Acid; Structure-Activity Relationship

2008
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
Inhibition of Malassezia globosa carbonic anhydrase with phenols.
    Bioorganic & medicinal chemistry, 2017, 05-01, Volume: 25, Issue:9

    Topics: Acetazolamide; Carbonic Anhydrase I; Carbonic Anhydrase Inhibitors; Dandruff; Humans; Hydrogen Bonding; Malassezia; Molecular Docking Simulation; Phenols; Structure-Activity Relationship

2017